image
image
image
image
image
image
image
image
image
image

Algebra Cheat Sheet: Essential Formulas & Concepts for Quick Reference

Access a comprehensive Algebra cheat sheet with key formulas, rules, and concepts. Perfect for students and professionals, this quick reference guide covers everything from basic equations to advanced algebraic techniques.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

This Algebra cheat sheet is your quick guide to mastering key concepts, formulas, and techniques. It's a compact reference for the essentials, from solving linear equations to working with exponents and factoring quadratics. Perfect for quick review or exam prep.

Get Homework Help

Neetesh Kumar

Neetesh Kumar | September 24, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon



1. Basic Properties and Facts:

Exponent Properties

  • 1p=1          a1=a          a0=1,a0          0a=0,a01^p = 1 \ \ \ \ \ \ \ \ \ \ a^1 = a \ \ \ \ \ \ \ \ \ \ a^0 = 1, a \ne 0 \ \ \ \ \ \ \ \ \ \ 0^a = 0, a \ne 0


  • pnpm=pn+m                        (pq)n=pnqnp^n p^m = p^{n+m} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space (pq)^n = p^n q^n


  • (pn)m=pnm                          p0=1,p0(p^n)^m = p^{nm} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space p^0 = 1, p \neq 0


  • pnpm=pnm=1pmn               (pq)n=pnqn\dfrac{p^n}{p^m} = p^{n-m} = \dfrac{1}{p^{m-n}} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \left(\dfrac{p}{q}\right)^n = \dfrac{p^n}{q^n}


  • p(nm)=(p1m)n=(pn)1m         1pn=pnp^{(\dfrac{n}{m})} = \left(p^{\dfrac{1}{m}}\right)^n = \left(p^n\right)^{\frac{1}{m}} \space \space \space \space \space \space \space \space \space \dfrac{1}{p^{-n}} = p^n


  • (pq)n=(qp)n=qnpn              pn=1pn\left(\dfrac{p}{q}\right)^{-n} = \left(\dfrac{q}{p}\right)^n = \dfrac{q^n}{p^n} \space \space \space \space \space \space \space \space \space \space \space \space \space \space p^{-n} = \dfrac{1}{p^n}

Number Rules

  • a.0=0a.0 = 0

  • 1.a=a1.a = a

Arithmetic Operations

  • (a)=a-(-a) = a
  • (1)(a±b)=ab(-1)(a \plusmn b) = -a ∓ b
  • ab+ac=a(b+c)ab + ac = a(b + c)
  • (a+b)(c+d)=ac+ad+bc+bd(a+b)(c+d) = ac + ad + bc + bd
  • (a)(b+c)(d+e)=and+abe+acd+ace(a)(b+c)(d+e) = and + abe + acd + ace

Fraction Rules

  • 0a=0,a0                a1=a                aa=1\dfrac{0}{a} = 0, a \ne 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \dfrac{a}{1} = a \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \dfrac{a}{a} = 1


  • (a)1=1a                   (ab)1=1ab=ba(a)^{-1} = \dfrac{1}{a} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\dfrac{a}{b})^{-1} = \dfrac{1}{\dfrac{a}{b}} = \dfrac{b}{a}


  • a(bc)=abca({\dfrac{b}{c}}) = \dfrac{ab}{c}


  • (ab)c=abc\dfrac{(\dfrac{a}{b})}c = \dfrac{a}{bc}


  • a(bc)=acb\dfrac{a}{(\dfrac{b}{c})} = \dfrac{ac}{b}


  • ab+cd=ad+bcbd\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{ad + bc}{bd}

Operation on Fractions Calculators

  • abcd=adbcbd\dfrac{a}{b} - \dfrac{c}{d} = \dfrac{ad - bc}{bd}


  • abcd=badc\dfrac{a - b}{c - d} = \dfrac{b - a}{d - c}


  • a+bc=ac+bc\dfrac{a + b}{c} = \dfrac{a}{c} + \dfrac{b}{c}


  • ab+aca=b+c,a0\dfrac{ab + ac}{a} = b + c, a \neq 0


  • (ab)(cd)=adbc\dfrac{(\dfrac{a}{b})}{(\dfrac{c}{d})} = \dfrac{ad}{bc}

Properties of Radicals

  • 1=1                        0=0\sqrt{1} = 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sqrt{0} = 0


  • an=a1n                      abn=anbn\sqrt[n]{a} = a^{\dfrac{1}{n}} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}


  • anm=anm               abn=anbn,a,b0\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \sqrt[n]{\dfrac{a}{b}} = \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}, a, b \geq 0


  • ann=a\sqrt[n]{a^n} = a if nn is odd      \space \space \space \space \space ann=a\sqrt[n]{a^n} = |a| if nn is even

Properties of Absolute Value

  • ax=ax,a0|ax| = a|x|, a \geq 0


  • a={aif a0aif a<0|a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases}


  • a0              a=a|a| \geq 0 \space \space \space \space \space \space \space \space \space \space \space \space \space \space |-a| = |a|


  • ab=ab         ab=ab|ab| = |a||b| \space \space \space \space \space \space \space \space \space \left|\dfrac{a}{b}\right| = \dfrac{|a|}{|b|}


  • a+ba+b     |a + b| \leqslant |a| + |b| \space \space \space \space \space (Triangle Inequality)

Properties of Inequalities

  • If a<ba < b, then a+c<b+ca + c < b + c and ac<bca - c < b - c


  • If a<ba < b and c>0c > 0, then ac<bcac < bc and ac<bc\dfrac{a}{c} < \dfrac{b}{c}


  • If a<ba < b and c<0c < 0, then ac>bcac > bc and ac>bc\dfrac{a}{c} > \dfrac{b}{c}

Distance Formula

Distance between two points Calculator
If A=(x1,y1)A = (x_1, y_1) and B=(x2,y2)B = (x_2, y_2) are two points the distance between them is

d(A,B)=(x2x1)2+(y2y1)2d(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

Complex Numbers

Complex Number Calculators

  • i=1,i2=1       a=ia,a0i = \sqrt{-1}, i^2 = -1 \space \space \space \space \space \space \space \sqrt{-a} = i\sqrt{a}, a \geq 0


  • (a+bi)+(c+di)=(a+c)+(b+d)i(a + bi) + (c + di) = (a + c) + (b + d)i


  • (a+bi)(c+di)=(ac)+(bd)i(a + bi) - (c + di) = (a - c) + (b - d)i


  • (a+bi)(c+di)=(acbd)+(ad+bc)i(a + bi)(c + di) = (ac - bd) + (ad + bc)i


  • (a+bi)(abi)=a2+b2(a + bi)(a - bi) = a^2 + b^2


  • a+bi=a2+b2|a + bi| = \sqrt{a^2 + b^2} (Complex Modulus)


  • a+bi=abi\overline{a + bi} = a - bi (Complex Conjugate)


  • (a+bi)(a+bi)=a+bi2(a + bi)(a + bi) = |a + bi|^2

2. Logarithms and Log Properties:

Definition

y=logb(x)    y = \log_b(x) \iff x=byx = b^y

Example: log5(125)=3\log_5(125) = 3 because 53=1255^3 = 125

Special Logarithms

  • ln(x)=loge(x)\ln(x) = \log_e(x) .......called as (natural log)

  • log(x)=log10(x)\log(x) = \log_{10}(x) ..... called as(common log)

where e=2.718281828...e = 2.718281828...

Logarithm Formula Sheet

Logarithm Properties

  • logb(b)=1         logb(1)=0\log_b(b) = 1 \space \space \space \space \space \space \space \space \space \log_b(1) = 0


  • logb(bx)=x       blogb(x)=x\log_b(b^x) = x \space \space \space \space \space \space \space b^{\log_b(x)} = x


  • logb(xr)=r logb(x)\log_b(x^r) = r \space \log_b(x)


  • logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)


  • logb(xy)=logb(x)logb(y)\log_b\left(\dfrac{x}{y}\right) = \log_b(x) - \log_b(y)


  • The domain of logb(x)\log_b(x) is x>0x > 0

Undefined

  • 00=Undefined0^0 = \text{Undefined}


  • x0=Undefined\dfrac{x}{0} = \text{Undefined}


  • log1(p)=Undefined\log_1(p) = \text{Undefined}


  • logq(p)=Undefined,p0\log_q(p) = \text{Undefined}, p \leq 0


  • logp(q)=Undefined,q0\log_p(q) = \text{Undefined}, q \leq 0

3. Factoring and Solving:

Factoring Formulas

  • x2a2=(x+a)(xa)x^2 - a^2 = (x + a)(x - a)


  • x2+2ax+a2=(x+a)2x^2 + 2ax + a^2 = (x + a)^2


  • x22ax+a2=(xa)2x^2 - 2ax + a^2 = (x - a)^2


  • x2+(a+b)x+ab=(x+a)(x+b)x^2 + (a + b)x + ab = (x + a)(x + b)


  • x3+3ax2+3a2x+a3=(x+a)3x^3 + 3ax^2 + 3a^2x + a^3 = (x + a)^3


  • x33ax2+3a2xa3=(xa)3x^3 - 3ax^2 + 3a^2x - a^3 = (x - a)^3


  • x3+a3=(x+a)(x2ax+a2)x^3 + a^3 = (x + a)(x^2 - ax + a^2)


  • x3a3=(xa)(x2+ax+a2)x^3 - a^3 = (x - a)(x^2 + ax + a^2)


  • x2na2n=(xnan)(xn+an)x^{2n} - a^{2n} = (x^n - a^n)(x^n + a^n)


If nn is odd then,

  • xnan=(xa)(xn1+axn2++an1)x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + \cdots + a^{n-1})


  • xn+an=(x+a)(xn1axn2+a2xn3+an1)x^n + a^n = (x + a)(x^{n-1} - ax^{n-2} + a^2x^{n-3} - \cdots + a^{n-1})

Quadratic Formula

Quadratic Equation Calculator
Solve ax2+bx+c=0ax^2 + bx + c = 0, a0a \neq 0, use

x=b±b24ac2ax = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

If b24ac>0b^2 - 4ac > 0 – Two real unequal solns.

If b24ac=0b^2 - 4ac = 0 - Repeated real solution.

If b24ac<0b^2 - 4ac < 0 - Two complex solutions.

Square Root Property

If x2=px^2 = p then x=±px = \pm \sqrt{p}

Absolute Value Equations/Inequalities

If bb is a positive number

p=bp=b or p=b|p| = b \Rightarrow p = -b \text{ or } p = b

p<bb<p<b|p| < b \Rightarrow -b < p < b

p>bp<b or p>b|p| > b \Rightarrow p < -b \text{ or } p > b

4. Completing the Square:

Solve 4x212x20=04x^2 - 12x - 20 = 0

(1) Divide by the coefficient of x2x^2 i.e. 4 by whole equation = x23x5=0x^2 - 3x - 5 = 0

(2) Move the constant to the other side: x23x=5x^2 - 3x = 5

(3) Take half the coefficient of xx, square it, and add it to both sides

x23x+(32)2=5+(32)2=5+94=294x^2 - 3x + \left(-\dfrac{3}{2}\right)^2 = 5 + \left(-\dfrac{3}{2}\right)^2 = 5 + \dfrac{9}{4} = \dfrac{29}{4}

(4) Factor the left side (x32)2=294\left(x - \dfrac{3}{2}\right)^2 = \dfrac{29}{4}

(5) Use the Square Root Property
x32=±294=±292x - \dfrac{3}{2} = \pm \dfrac{\sqrt{29}}{4} = \pm \dfrac{\sqrt{29}}{2}

(6) Solve for xx: x=32±292x = \dfrac{3}{2} \pm \dfrac{\sqrt{29}}{2}

5. Functions and Graphs:

Constant Function

y=ay = a or f(x)=af(x) = a

Graph is a horizontal line passing through the point (0,a)(0, a).

Line/Linear Function

y=mx+by = mx + b or f(x)=mx+bf(x) = mx + b

Graph is a line with point (0,b)(0, b) and slope mm.

Slope

Slope of the line containing the two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is

m=y2y1x2x1=ΔyΔx=distance risedistance runm = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\Delta y }{\Delta x} = \dfrac{\text{distance rise}}{\text{distance run}}

Slope-Intercept Form

The equation of the line with slope mm and yy-intercept (0,b)(0, b) is

y=mx+by = mx + b

Point-Slope Form

The equation of the line with slope mm and passing through the point (x1,y1)(x_1, y_1) is

y=y1+m(xx1)y = y_1 + m(x - x_1)

Parabola/Quadratic Function

y=a(xh)2+k;    f(x)=a(xh)2+ky = a(x - h)^2 + k; \space \space \space \space f(x) = a(x - h)^2 + k

The graph is a parabola that opens up if a>0a > 0 or down if a<0a < 0 and has a vertex at (h,k)(h, k).

Parabola/Quadratic Function

y=ax2+bx+c;      f(x)=ax2+bx+cy = ax^2 + bx + c; \space \space \space \space \space \space f(x) = ax^2 + bx + c

The graph is a parabola that opens up if a>0a > 0 or down if a<0a < 0 and has a vertex at (b2a,f(b2a))\left(-\dfrac{b}{2a}, f\left(-\dfrac{b}{2a}\right)\right).

Parabola/Quadratic Function

x=ay2+by+c       g(y)=ay2+by+cx = ay^2 + by + c \space \space \space \space \space \space \space g(y) = ay^2 + by + c

The graph is a parabola that opens right if a>0a > 0 or left if a<0a < 0 and has a vertex at (g(b2a),b2a)\left(g\left(-\dfrac{b}{2a}\right), -\dfrac{b}{2a}\right).

Circle

(xh)2+(yk)2=r2(x - h)^2 + (y - k)^2 = r^2

Graph is a circle with radius rr and center (h,k)(h, k).

Ellipse

(xh)2a2+(yk)2b2=1\dfrac{(x - h)^2}{a^2} + \dfrac{(y - k)^2}{b^2} = 1

Graph is an ellipse with center (h,k)(h, k), with vertices aa units right/left from the center and vertices bb units up/down from the center.

Hyperbola

(xh)2a2(yk)2b2=1\dfrac{(x - h)^2}{a^2} - \dfrac{(y - k)^2}{b^2} = 1

Graph is a hyperbola that opens left and right, has a center at (h,k)(h, k), vertices aa units left/right of the center, and asymptotes that pass through the center with slope ±ba\pm \dfrac{b}{a}.

Hyperbola

(yk)2b2(xh)2a2=1\dfrac{(y - k)^2}{b^2} - \dfrac{(x - h)^2}{a^2} = 1

Graph is a hyperbola that opens up and down, has a center at (h,k)(h, k), vertices bb units up/down from the center, and asymptotes that pass through the center with slope ±ba\pm \dfrac{b}{a}.

6. Common Algebraic Errors:

Error                                                      \space \space \space \space \space \space \space\space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Reason/Correct/Justification/Example

  • 200\dfrac{2}{0} \neq 0 and 202\dfrac{2}{0} \neq 2                            \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Division by zero is undefined!


  • 329                                      32=9-3^2 \neq 9 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -3^2 = -9, but (3)2=9(-3)^2 = 9 Pay attention to the parenthesis


  • (x2)3x5                                     (x2)3=x2 x2 x2=x6(x^2)^3 \neq x^5 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space (x^2)^3 = x^2 \space x^2 \space x^2 = x^6


  • ab+cab+ac                                  12=11+111+11=2\dfrac{a}{b+c} \neq \dfrac{a}{b} + \dfrac{a}{c} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \dfrac{1}{2} = \dfrac{1}{1+1} \neq \dfrac{1}{1} + \dfrac{1}{1} = 2


  • 1x2x3x2+x3                        \dfrac{1}{x^2 x^3} \neq {x}^{-2} + {x}^{-3} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space A more complex version of the previous error.


  • a+bxa1+bx                              a+bxa=aa+bxa=1+bxa \dfrac{\cancel{a}+bx}{\cancel{a}} \neq 1 + bx \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \dfrac{a+bx}{a} = \dfrac{a}{a} + \dfrac{bx}{a} = 1 + \dfrac{bx}{a} \space Beware of incorrect cancelling!


  • a(x1)axa                a(x1)=ax+a -a(x - 1) \neq -ax - a \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -a(x - 1) = -ax + a \space Make sure you distribute the “-”


  • (x+a)2x2+a2                      (x+a)2=(x+a)(x+a)=x2+2ax+a2(x + a)^2 \neq x^2 + a^2 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space (x + a)^2 = (x + a)(x + a) = x^2 + 2ax + a^2


  • x2+a2x+a                        5=25=32+4232+42=3+4=7\sqrt{x^2 + a^2} \neq x + a \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space 5= \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7


  • x+ax+aa                 \sqrt{x + a} \neq \sqrt{x} + \sqrt{a} a \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space See previous error


  • (x+a)nxn+an(x + a)^n \neq x^n + a^n
    and x+anxn+an            \sqrt[n]{x + a} \neq \sqrt[n]{x} + \sqrt[n]{a} \space \space \space \space \space \space \space \space \space \space \space \space More general versions of previous three errors.


  • 2(x+1)2(2x+2)2                2(x+1)2=2(x2+2x+1)=2x2+4x+22(x+1)^2 \neq (2x+2)^2 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space 2(x+1)^2 = 2(x^2 + 2x + 1) = 2x^2 + 4x + 2

                                                           (2x+2)2=4x2+8x+4\space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space (2x+2)^2 = 4x^2 + 8x + 4           \space \space \space \space \space \space \space \space \space \space Square first, then distribute!

  • (2x+2)22(x+1)2(2x+2)^2 \neq 2(x+1)^2              \space \space \space \space \space \space \space \space \space \space \space \space \space See the previous example. You cannot factor out a constant if there is a power on the parenthesis!


  • x2+a2x2+a2         x2+a2=(x2+a2)12      \sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2} \space \space \space \space \space \space \space \space \space \sqrt{-x^2 + a^2} = (-x^2 + a^2)^{\dfrac{1}{2}} \space \space \space \space \space \space Now see the previous error.


  • a(bc)abc                                       a(bc)=(a1)(bc)=(a1)(cb)=acb\dfrac{a}{(\dfrac{b}{c})} \neq \dfrac{ab}{c} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \dfrac{a}{(\dfrac{b}{c})} = \dfrac{(\dfrac{a}{1})}{(\dfrac{b}{c})} = (\dfrac{a}{1}) (\dfrac{c}{b}) = \dfrac{ac}{b}


  • (ab)cacb                                      (ab)c=(ab)(c1)=(ab)(1c)=abc\frac{(\dfrac{a}{b})}{c} \neq \dfrac{ac}{b} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \dfrac{(\dfrac{a}{b})}{c} = \dfrac{(\dfrac{a}{b})}{(\dfrac{c}{1})} = (\dfrac{a}{b})(\dfrac{1}{c}) = \dfrac{a}{bc}


If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]

Get Assignment Help\fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}}
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.

Related Pages:\color{red} \bold{Related \space Pages:}
Complex-number Formula Sheet
Quadratic-equations Formula Sheet
Pre Algebra Calculators
Algebra Calculators
Pre Calculus Calculators

Blog Information

Blog Author: Neetesh Kumar

Blog Publisher: Doubtlet


Leave a comment

Comments(0)


Your comment will be reviewed before it is published.