image
image
image
image
image
image
image
image
image
image

Derivatives and Integrals Cheat Sheet | Essential Calculus Guide

Master calculus quickly with our comprehensive cheat sheet on derivatives and integrals. Simplified rules, key formulas, and practical examples to help you solve problems with ease. Perfect for students and professionals alike!
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

This Derivatives and Integrals Cheat Sheet provides quick reference formulas for common functions and their derivatives or integrals. It includes key rules like the power rule, product rule, chain rule, and integrals of basic functions, helping you solve calculus problems more efficiently. Keep this handy for quick problem-solving and revision!

Get Homework Help

Neetesh Kumar

Neetesh Kumar | September 25, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon



1. Derivatives:

Basic Properties/Formulas/Rules:

ddx(cf(x))=cf(x)\dfrac{d}{dx} \bigg( cf(x) \bigg) = c f'(x), where cc is any constant.

ddx(f(x)±g(x))=f(x)±g(x)\dfrac{d}{dx} \bigg( f(x) \pm g(x) \bigg) = f'(x) \pm g'(x)

ddx(xn)=nxn1\dfrac{d}{dx} \bigg( x^n \bigg) = n x^{n-1}, nn is any number.

ddx(c)=0\dfrac{d}{dx} \left( c \right) = 0, cc is any constant.

ddx(eg(x))=g(x)eg(x)\frac{d}{dx} \bigg( e^{g(x)} \bigg) = g'(x) e^{g(x)}

ddx[ln(g(x))]=g(x)g(x)\dfrac{d}{dx} \left[ \ln(g(x)) \right] = \dfrac{g'(x)}{g(x)}

Product Rule

(f(x)g(x))=f(x)g(x)+f(x)g(x)\bigg( f(x)g(x) \bigg)' = f'(x)g(x) + f(x)g'(x)

Quotient Rule

(f(x)g(x))=f(x)g(x)f(x)g(x)(g(x))2 \left( \dfrac{f(x)}{g(x)} \right)' = \dfrac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}

Chain Rule

ddx(f(g(x)))=f(g(x))g(x)\dfrac{d}{dx} \bigg( f\big(g(x)\big) \bigg) = f'(g(x)) g'(x)

Common Derivatives:

Polynomials

ddx(c)=0,     ddx(x)=1,      ddx(cx)=c\dfrac{d}{dx}(c) = 0, \ \ \ \ \ \dfrac{d}{dx}(x) = 1, \ \ \ \ \ \ \dfrac{d}{dx}(cx) = c

ddx(xn)=nxn1        ddx(cxn)=ncxn1\dfrac{d}{dx}(x^n) = nx^{n-1} \ \ \ \ \ \ \ \ \dfrac{d}{dx}(cx^n) = ncx^{n-1}

Trigonometric Functions

ddx[sin(x)]=cos(x)\dfrac{d}{dx}[\sin(x)] = \cos(x)

ddx[cos(x)]=sin(x)\dfrac{d}{dx}[\cos(x)] = - \sin(x)

ddx[tan(x)]=sec2(x)\dfrac{d}{dx}[\tan(x)] = \sec^2(x)

ddx[csc(x)]=csc(x)cot(x)\dfrac{d}{dx}[\csc(x)] = - \csc(x) \cot(x)

ddx[sec(x)]=sec(x)tan(x)\dfrac{d}{dx}[\sec(x)] = \sec(x) \tan(x)

ddx[cot(x)]=csc2(x)\dfrac{d}{dx}[\cot(x)] = - \csc^2(x)

Inverse Trigonometric Functions

ddx[sin1(x)]=11x2\dfrac{d}{dx}[\sin^{-1}(x)] = \dfrac{1}{\sqrt{1 - x^2}}

ddx[cos1(x)]=11x2\dfrac{d}{dx}[\cos^{-1}(x)] = \dfrac{-1}{\sqrt{1 - x^2}}

ddx[tan1(x)]=11+x2\dfrac{d}{dx}[\tan^{-1}(x)] = \dfrac{1}{1 + x^2}

ddx[csc1(x)]=1xx21\dfrac{d}{dx}[\csc^{-1}(x)] = \dfrac{-1}{|x|\sqrt{x^2 - 1}}

ddx[sec1(x)]=1xx21\dfrac{d}{dx}[\sec^{-1}(x)] = \dfrac{1}{|x|\sqrt{x^2 - 1}}

ddx[cot1(x)]=11+x2\dfrac{d}{dx}[\cot^{-1}(x)] = \dfrac{-1}{1 + x^2}

Exponential & Logarithmic Functions

ddx[ax]=axln(a)\dfrac{d}{dx}[a^x] = a^x \ln(a)

ddx[ex]=ex\dfrac{d}{dx}[e^x] = e^x

ddx[ln(x)]=1x,x>0\dfrac{d}{dx}[\ln(x)] = \dfrac{1}{x}, x > 0

ddx[lnx]=1x,x0\dfrac{d}{dx}[\ln |x|] = \dfrac{1}{x}, x \neq 0

ddx[loga(x)]=1xln(a),x>0\dfrac{d}{dx}[\log_a(x)] = \dfrac{1}{x \ln(a)}, x > 0

Hyperbolic Functions

ddx[sinh(x)]=cosh(x)\dfrac{d}{dx}[\sinh(x)] = \cosh(x)

ddx[cosh(x)]=sinh(x)\dfrac{d}{dx}[\cosh(x)] = \sinh(x)

ddx[tanh(x)]=sech2(x)\dfrac{d}{dx}[\tanh(x)] = \text{sech}^2(x)

ddx[csch(x)]=csch(x)coth(x)\dfrac{d}{dx}[csc h(x)] = - csch(x) \coth(x)

ddx[sech(x)]=sech(x)tanh(x)\dfrac{d}{dx}[sech(x)] = - sech(x) \tanh(x)

ddx[coth(x)]=csch2(x)\dfrac{d}{dx}[\coth(x)] = - csch^2(x)

2. Integrals:

Basic Properties/Formulas/Rules:

cf(x)dx=cf(x)dx\int cf(x) dx = c \int f(x) dx, cc is a constant.

f(x)±g(x)dx=f(x)dx±g(x)dx\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx

abf(x)dx=f(x)ab=F(b)F(a)\int_a^b f(x) dx = f(x) \Big|_a^b = F(b) - F(a), where f(x)=f(x)dxf(x) = \int f(x) dx

abcf(x)dx=cabf(x)dx\int_a^b cf(x) dx = c \int_a^b f(x) dx, cc is a constant.

abf(x)±g(x)dx=abf(x)dx±abg(x)dx\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx

aaf(x)dx=0\int_a^a f(x) dx = 0

abf(x)dx=baf(x)dx\int_a^b f(x) dx = -\int_b^a f(x) dx

abf(x)dx=acf(x)dx+cbf(x)dx\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx

abcdx=c(ba)\int_a^b c dx = c(b - a), cc is a constant.

If f(x)0f(x) \geq 0 on axba \leq x \leq b then abf(x)dx0\int_a^b f(x) dx \geq 0

If f(x)g(x)f(x) \geq g(x) on axba \leq x \leq b then abf(x)dxabg(x)dx\int_a^b f(x) dx \geq \int_a^b g(x) dx

Common Integrals:

Polynomials

dx=x+c\int dx = x + c

kdx=kx+c\int k dx = kx + c

xndx=1n+1xn+1+c,n1\int x^n dx = \dfrac{1}{n + 1}x^{n+1} + c, n \neq -1

1xdx=lnx+c\int \dfrac{1}{x} dx = \ln|x| + c

x1dx=lnx+c\int x^{-1} dx = \ln|x| + c

xndx=1n+1xn+1+c,n1\int x^{-n} dx = \dfrac{1}{-n + 1}x^{-n+1} + c, n \neq 1

1ax+bdx=1alnax+b+c\int \dfrac{1}{ax + b} dx = \dfrac{1}{a} \ln|ax + b| + c

xpqdx=1pq+1xpq+1+c=qp+qxp+qq+c\int x^\frac{p}{q} dx = \dfrac{1}{\frac{p}{q} + 1} x^{\frac{p}{q} + 1} + c = \dfrac{q}{p + q} x^{\frac{p + q}{q}} + c

Trigonometric Functions

cos(u)du=sin(u)+c\int \cos(u) du = \sin(u) + c

sin(u)du=cos(u)+c\int \sin(u) du = - \cos(u) + c

sec2u du=tan(u)+c\int \sec^2u \space du = \tan(u) + c

sec(u)tan(u)du=sec(u)+c\int \sec(u)\tan(u) du = \sec(u) + c

csc(u)cot(u)du=csc(u)+c\int \csc(u) \cot(u) du = - \csc(u) + c

csc2(u)du=cot(u)+c\int \csc^2(u) du = - \cot(u) + c

tan(u)du=ln cos(u)+c=ln sec(u)+c\int \tan(u) du = -\ln| \space \cos(u)| + c = \ln| \space \sec(u)| + c

cot(u)du=ln sin(u)+c=ln csc(u)+c\int \cot(u) du = \ln| \space \sin(u)| + c = -\ln| \space \csc(u)| + c

sec(u)du=ln sec(u)+tan(u)+c\int \sec(u) du = \ln| \space \sec(u) + \tan(u)| + c

sec3(u)du=12(sec(u) tan(u)+ln sec(u)+tan(u))+c\int \sec^3(u) du = \dfrac{1}{2}\left( \sec(u) \space \tan(u) + \ln| \space \sec(u) + \tan(u)| \right) + c

csc(u)du=ln csc(u)cot(u)+c\int \csc(u) du = \ln| \space \csc(u) - \cot(u)| + c

csc3(u)du=12( csc(u) cot(u)+ln csc(u)cot(u))+c\int \csc^3(u) du = \dfrac{1}{2} \left( - \space \csc(u) \space \cot(u) + \ln| \space \csc(u) - \cot(u)| \right) + c

Exponential & Logarithmic Functions

eudu=eu+c\int e^u du = e^u + c

audu=auln(a)+c\int a^u du = \dfrac{a^u}{\ln(a)} + c

ln(u)du=uln(u)u+c\int \ln(u) du = u \ln(u) - u + c

eausin(bu)du=eaua2+b2(a sin(bu)b cos(bu))+c\int e^{au} \sin(bu) du = \dfrac{e^{au}}{a^2 + b^2} \left( a \space \sin(bu) - b \space \cos(bu) \right) + c

ueudu=(u1)eu+c\int ue^u du = (u - 1)e^u + c

eaucos(bu)du=eaua2+b2(acos(bu)+bsin(bu))+c\int e^{au} \cos(bu) du = \dfrac{e^{au}}{a^2 + b^2} \left( a\cos(bu) + b\sin(bu) \right) + c

1uln(u)du=lnln(u)+c\int \dfrac{1}{u\ln(u)} du = \ln|\ln(u)| + c

Inverse Trigonometric Functions

1a2u2du=sin1(ua)+c\int \dfrac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1}\left( \frac{u}{a} \right) + c

sin1(u)du=u sin1(u)+1u2+c\int \sin^{-1}(u) du = u \space \sin^{-1}(u) + \sqrt{1 - u^2} + c

1a2+u2du=1a tan1(ua)+c\int \dfrac{1}{a^2 + u^2} du = \dfrac{1}{a} \space \tan^{-1}\left( \dfrac{u}{a} \right) + c

tan1(u)du=u tan1(u)12ln(1+u2)+c\int \tan^{-1}(u) du = u \space \tan^{-1}(u) - \dfrac{1}{2} \ln\left( 1 + u^2 \right) + c

1uu2a2du=1a sec1(ua)+c\int \dfrac{1}{u \sqrt{u^2 - a^2}} du = \dfrac{1}{a} \space sec^{-1}\left( \dfrac{u}{a} \right) + c

cos1(u)du=u cos1(u)1u2+c\int \cos^{-1}(u) du = u \space \cos^{-1}(u) - \sqrt{1 - u^2} + c

Hyperbolic Functions

sinh(u)du=cosh(u)+c\int \sinh(u)du = \cosh(u) + c

sech(u)tanh(u)du=sech(u)+c\int sech(u) tanh(u)du = - sech(u) + c

sech2(u)du=tanh(u)+c\int sech^2(u)du = \tanh(u) + c

cosh(u)du=sinh(u)+c\int \cosh(u)du = \sinh(u) + c

csch(u)coth(u)du=csch(u)+c\int csch(u) \coth(u)du = - csch(u) + c

csch2(u)du=coth(u)+c\int csch^2(u)du = - \coth(u) + c

tanh(u)du=ln(cosh(u))+c\int tanh(u)du = \ln(\cosh(u)) + c

sech(u)du=tan1 sinh(u)+c\int sech(u)du = \tan^{-1}| \space \sinh(u)| + c

Miscellaneous Integrals

1a2u2 du=12alnu+aua+c\int \dfrac{1}{a^2 - u^2} \ du = \dfrac{1}{2a} \ln\left| \dfrac{u + a}{u - a} \right| + c

a2+u2 du=u2a2+u2+a22lnu+a2+u2+c\int \sqrt{a^2 + u^2} \ du = \dfrac{u}{2} \sqrt{a^2 + u^2} + \dfrac{a^2}{2} \ln\left| u + \sqrt{a^2 + u^2} \right| + c

1u2a2 du=12alnuau+a+c\int \dfrac{1}{u^2 - a^2} \ du = \dfrac{1}{2a} \ln\left| \dfrac{u - a}{u + a} \right| + c

u2a2 du=u2u2a2a22lnu+u2a2+c\int \sqrt{u^2 - a^2} \ du = \dfrac{u}{2} \sqrt{u^2 - a^2} - \dfrac{a^2}{2} \ln\left| u + \sqrt{u^2 - a^2} \right| + c

a2u2 du=u2a2u2+a22sin1(ua)+c\int \sqrt{a^2 - u^2} \ du = \dfrac{u}{2} \sqrt{a^2 - u^2} + \dfrac{a^2}{2} \sin^{-1}\left( \dfrac{u}{a} \right) + c

2auu2 du=ua22auu2+a22cos1(aua)+c\int \sqrt{2au - u^2} \ du = \dfrac{u - a}{2} \sqrt{2au - u^2} + \dfrac{a^2}{2} \cos^{-1}\left( \dfrac{a - u}{a} \right) + c

Standard Integration Techniques:

uu-Substitution

abf(g(x))g(x)dx\int_a^b f(g(x))g'(x) dx dx will convert the integral into abf(g(x))g(x)dx=g(a)g(b)f(u)du \int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du
using the substitution u=g(x)u = g(x) where du=g(x)dxdu = g'(x)dx. For indefinite integrals, drop the limits of integration.

Integration by Parts:

udv=uvvdu\int u dv = uv - \int v du and abudv=uvababvdu\int_a^b u dv = uv \Big|_a^b - \int_a^b v du.
Choose uu and dvdv from the integral and compute dudu by differentiating uu, and compute vv using v=dvv = \int dv.

Trigonometric Substitutions :

If the integral contains the following root use the given substitution and formula.

a2b2x2x=absin(θ)\sqrt{a^2 - b^2x^2} \Rightarrow x = \dfrac{a}{b} \sin(\theta), and cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta)

b2x2a2x=absec(θ)\sqrt{b^2x^2 - a^2} \Rightarrow x = \dfrac{a}{b} \sec(\theta), and tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1

a2+b2x2x=abtan(θ)\sqrt{a^2 + b^2x^2} \Rightarrow x = \dfrac{a}{b} \tan(\theta), and sec2(θ)=1+tan2(θ)\sec^2(\theta) = 1 + \tan^2(\theta)

Partial Fractions:

If integrating a rational expression involving polynomials, P(x)Q(x)dx\int \dfrac{P(x)}{Q(x)} dx, where the degree (largest exponent) of P(x)P(x) is smaller than the degree of Q(x)Q(x) then factor the denominator as completely as possible and find the partial fraction decomposition of the rational expression. Integrate the partial fraction decomposition (P.F.D.). We get terms in the decomposition for each factor in the denominator according to the following table.

| Factor of Q(x)Q(x) | Term in P.F.D. | Factor is Q(x)Q(x) | Term in P.F.D.

| --------------------- | --------------------| ----------------------l------------------------------------------

   ax+b                   Aax+b                   (ax+b)k              A1ax+b+A2(ax+b)2++Ak(ax+b)k\space \space \space ax + b \space \space \space \space \space \space \space \space \space \space \space \space \space \space\space \ \ \ \ \dfrac{A}{ax + b} \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \ \ \ \ (ax + b)^k \space \space \space \space \space \space \space\space \space \space\space \space \space \ \dfrac{A_1}{ax + b} + \dfrac{A_2}{(ax + b)^2} + \dots + \dfrac{A_k}{(ax + b)^k}


   ax2+bx+c    Ax+Bax2+bx+c        (ax2+bx+c)k     A1x+B1ax2+bx+c++Akx+Bk(ax2+bx+c)k\space \space \space ax^2 + bx + c \space \space \space \space \dfrac{Ax + B}{ax^2 + bx + c} \space \space \space \space \space \space \space \space (ax^2 + bx + c)^k \space \space \space \space \space \dfrac{A_1x + B_1}{ax^2 + bx + c} + \dots + \dfrac{A_kx + B_k}{(ax^2 + bx + c)^k}

Products and Quotients of Trigonometric Functions:

For sinn(x) cosm(x)dx\int \sin^n(x) \space \cos^m(x) dx we have the following:

  1. nn odd. strip 1 sine out and convert rest to cosines using sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x), Then use the substitution u=cos(x)u = \cos(x).
  2. mm odd. Strip 1 cosine out and convert the rest to sines using cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x). Then, use the substitution u=sin(x)u = \sin(x).
  3. nn and mm are both odd. use either 1. or 2.
  4. nn and mm are both even. use double-angle and/or half-angle formulas to reduce the integral into an integrated form.

For tann(x)secm(x)dx\int \tan^n(x) \sec^m(x) dx we have the following:

  1. nn odd. strip 1 tangent and one secant, and convert the rest to secants using tan2(x)=sec2(x)1\tan^2(x) = \sec^2(x) - 1, Then use the substitution u=sec(x)u = \sec(x).
  2. mm even. strip 2 secants out and convert rest to tangents using sec2(x)=1+tan2(x)\sec^2(x) = 1 + \tan^2(x), Then use the substitution u=tan(x)u = \tan(x).
  3. nn odd and mm is even. use either 1. or 2.
  4. nn is even and mm is odd. Each integral will be dealt with differently.

convert example:
sin6(x)\sin^6(x) into (sin2(x))3=(1cos2(x))3\left( \sin^2(x) \right)^3 = \left( 1 - \cos^2(x) \right)^3


If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]

Get Assignment Help\fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}}
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.

Related Pages:\color{red} \bold{Related \space Pages:}
Methods-of-differentiation Formula Sheet
Indefinite-integration Formula Sheet
Definite-integration Formula Sheet
Pre Calculus Calculators

Blog Information

Blog Author: Neetesh Kumar

Blog Publisher: Doubtlet


Leave a comment

Comments(0)


Your comment will be reviewed before it is published.