image
image
image
image
image
image
image
image
image
image

Laplace Transform Cheat Sheet: Essential Formulas and Table

Get quick access to key Laplace Transform formulas with this comprehensive cheat sheet. Perfect for students and professionals, our table covers common Laplace transforms, properties, and examples to help you ace your math problems.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

The Laplace Transform is a powerful tool to simplify solving differential equations by converting them into algebraic ones. This cheat sheet provides essential formulas, properties, and common transforms, making tackling problems in control systems, signal processing, and engineering analysis easier.

Get Homework Help

Neetesh Kumar

Neetesh Kumar | September 16, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon



1. Definition:

Laplace transform of a function f(t)f(t) is:

F(s)=0+f(t).est.dtF(s) = \int_0^{+\infty} f(t).e^{-st} . dt


2. Laplace Transform Formulas:

Given f(t)=L1{F(s)}f(t) = \mathcal{L}^{-1}\{F(s)\} then F(s)=L{f(t)}F(s) = \mathcal{L}\{f(t)\}
Below is the table for Laplace transform for all types of possible functions.
   f(t)            F(s)\space \space \space \bold{f(t)} \space \space \space \space \space \space \space \space \space \space \space \space \bold{F(s)}

  1. 11s1 \quad \Rightarrow \quad \dfrac{1}{s}


  2. eat1sae^{at} \quad \Rightarrow \quad \dfrac{1}{s - a}


  3. tn,n=1,2,3,n!sn+1t^n, \quad n = 1, 2, 3, \dots \quad \Rightarrow \quad \dfrac{n!}{s^{n+1}}


  4. tp,p>1Γ(p+1)sp+1t^p, \quad p > -1 \quad \Rightarrow \quad \dfrac{\Gamma(p+1)}{s^{p+1}}


  5. tπ2s(32)\sqrt{t} \quad \Rightarrow \quad \dfrac{\sqrt{\pi}}{2s^{(\dfrac{3}{2})}}


  6. t(n12),n=1,2,3,135(2n1)π2ns(n+12)t^{(n-\dfrac{1}{2})}, \quad n = 1, 2, 3, \dots \quad \Rightarrow \quad \dfrac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 1)\sqrt{\pi}}{2^n s^{(n + \dfrac{1}{2})}}


  7. sin(at)as2+a2\sin(at) \quad \Rightarrow \quad \dfrac{a}{s^2 + a^2}


  8. cos(at)ss2+a2\cos(at) \quad \Rightarrow \quad \dfrac{s}{s^2 + a^2}


  9. t sin(at)2as(s2+a2)2t \space \sin(at) \quad \Rightarrow \quad \dfrac{2as}{(s^2 + a^2)^2}


  10. t cos(at)s2a2(s2+a2)2t \space \cos(at) \quad \Rightarrow \quad \dfrac{s^2 - a^2}{(s^2 + a^2)^2}


  11. sin(at)at cos(at)2a3(s2+a2)2\sin(at) - at \space \cos(at) \quad \Rightarrow \quad \dfrac{2a^3}{(s^2 + a^2)^2}


  12. sin(at)+at cos(at)2as2(s2+a2)2\sin(at) + at \space \cos(at) \quad \Rightarrow \quad \dfrac{2as^2}{(s^2 + a^2)^2}


  13. cos(at)at sin(at)s(s2a2)(s2+a2)2\cos(at) - at \space \sin(at) \quad \Rightarrow \quad \frac{s(s^2 - a^2)}{(s^2 + a^2)^2}


  14. cos(at)+at sin(at)s(s2+3a2)(s2+a2)2\cos(at) + at \space \sin(at) \quad \Rightarrow \quad \dfrac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}


  15. sin(at+b)s sin(b)+a cos(b)s2+a2\sin(at + b) \quad \Rightarrow \quad \dfrac{s \space \sin(b) + a \space \cos(b)}{s^2 + a^2}


  16. cos(at+b)s cos(b)a sin(b)s2+a2\cos(at + b) \quad \Rightarrow \quad \dfrac{s \space \cos(b) - a \space \sin(b)}{s^2 + a^2}


  17. sinh(at)as2a2\sinh(at) \quad \Rightarrow \quad \dfrac{a}{s^2 - a^2}


  18. cosh(at)ss2a2\cosh(at) \quad \Rightarrow \quad \dfrac{s}{s^2 - a^2}


  19. eatsin(bt)b(sa)2+b2e^{at} \sin(bt) \quad \Rightarrow \quad \dfrac{b}{(s - a)^2 + b^2}


  20. eatcos(bt)sa(sa)2+b2e^{at} \cos(bt) \quad \Rightarrow \quad \dfrac{s - a}{(s - a)^2 + b^2}


  21. eatsinh(bt)b(sa)2b2e^{at} \sinh(bt) \quad \Rightarrow \quad \dfrac{b}{(s - a)^2 - b^2}


  22. eatcosh(bt)sa(sa)2b2e^{at} \cosh(bt) \quad \Rightarrow \quad \dfrac{s - a}{(s - a)^2 - b^2}


  23. tneat,n=1,2,3,n!(sa)n+1t^n e^{at}, \quad n = 1, 2, 3, \dots \quad \Rightarrow \quad \dfrac{n!}{(s - a)^{n+1}}


  24. f(ct)1cF(sc)f(ct) \quad \Rightarrow \quad \dfrac{1}{c} F\left(\dfrac{s}{c}\right)


  25. uc(t)=u(tc)ecssu_c(t) = u(t - c) \quad \Rightarrow \quad \dfrac{e^{-cs}}{s}


  26. δ(tc)ecs\delta(t - c) \quad \Rightarrow \quad e^{-cs}


  27. uc(t)f(tc)ecsF(s)u_c(t) f(t - c) \quad \Rightarrow \quad e^{-cs} F(s)


  28. uc(t)g(t)ecsL{g(t+c)}u_c(t) g(t) \quad \Rightarrow \quad e^{-cs} \mathcal{L}\{g(t + c)\}


  29. ectf(t)F(sc)e^{ct} f(t) \quad \Rightarrow \quad F(s - c)


  30. tnf(t),n=1,2,3,(1)nF(n)(s)t^n f(t), \quad n = 1, 2, 3, \dots \quad \Rightarrow \quad (-1)^n F^{(n)}(s)


  31. 1tf(t)sF(u)du\dfrac{1}{t} f(t) \quad \Rightarrow \quad \int_s^\infty F(u) \, du


  32. 0tf(v)dvF(s)s\int_0^t f(v) \, dv \quad \Rightarrow \quad \dfrac{F(s)}{s}


  33. 0tf(tτ)g(τ)dτF(s)G(s)\int_0^t f(t - \tau) g(\tau) \, d\tau \quad \Rightarrow \quad F(s) G(s)


  34. f(t+T)=f(t)0Testf(t)dt  11esTf(t + T) = f(t) \quad \Rightarrow \quad \int_0^T e^{-st} f(t) \, dt \ \ \dfrac{1}{1 - e^{-sT}}


  35. f(t)sF(s)f(0)f'(t) \quad \Rightarrow \quad sF(s) - f(0)


  36. f(t)s2F(s)sf(0)f(0)f''(t) \quad \Rightarrow \quad s^2 F(s) - sf(0) - f'(0)


  37. f(n)(t)snF(s)sn1f(0)sn2f(0)sf(n2)(0)f(n1)(0)f^{(n)}(t) \quad \Rightarrow \quad s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)


3. Table Notes:

  1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
    Recall the definition of hyperbolic functions.
  • cosh(t)=et+et2\cosh(t) = \dfrac{e^t + e^{-t}}{2}
  • sinh(t)=etet2\sinh(t) = \dfrac{e^t - e^{-t}}{2}
  1. Be careful when using "normal" trig functions vs. hyperbolic functions. The only difference in the formulas is the "+a2+a^2" for the "normal" trig functions becomes a "a2-a^2" for the hyperbolic functions!

  2. Formula #4 uses the Gamma function, which is defined as

  • Γ(t)=0exxt1dx\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} \, dx

If nn is a positive integer, then:

  • Γ(n+1)=n!\Gamma(n+1) = n!

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

  • Γ(p+1)=pΓ(p)\Gamma(p+1) = p \Gamma(p)
  • p(p+1)(p+2)(p+n1)=(Γ(p+n)Γ(p))p(p+1)(p+2) \dots (p+n-1) = \left(\dfrac{\Gamma(p+n)}{\Gamma(p)}\right)
  • Γ(12)=π\Gamma\left(\dfrac{1}{2}\right) = \sqrt{\pi}

If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]

Get Assignment Help\fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}}
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.

Related Pages:\color{red} \bold{Related \space Pages:}
Logarithm Formula Sheet
Complex-number Formula Sheet
Quadratic-equations Formula Sheet
Pre Calculus Calculators

Blog Information

Blog Author: Neetesh Kumar

Blog Publisher: Doubtlet


Leave a comment

Comments(0)


Your comment will be reviewed before it is published.