image
image
image
image
image
image
image
image
image
image

Limit Cheat Sheet: Master Calculus Limits Quickly

Learn essential calculus limit concepts with our Limit Cheat Sheet. Simplify complex limit problems with key formulas, examples, and visual aids. Perfect for students and professionals!
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

A Limit Cheat Sheet is a concise guide that helps students quickly recall important limit concepts, rules, and techniques used in calculus. It typically covers topics like the definition of a limit, L'Hopital's Rule, one-sided limits, and common limit-solving strategies. This quick-reference tool is perfect for exam preparation or reinforcing fundamental limit calculations in calculus.

Get Homework Help

Neetesh Kumar

Neetesh Kumar | September 25, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon



Limits Definitions


Precise Definition : We say limxaf(x)={\lim\limits_{x \to a} f (x) = } if for every ε>0{\varepsilon>0} there is a δ>0{\delta>0} such that whenever 0<xa<δ{0<|x-a|<\delta} then f(x)L<ε.{f(x)-L|<\varepsilon.}

Definition : We say limxaf(x)=L{\lim\limits_{x \to a} f (x) = L} if we can make f(x){f(x)} as close to L{L} as we want by taking x{x} sufficiently close to a{a} (on either side of a{a}) with out letting x=a.{x=a.}

Right-hand limit: limxa+f(x)=L.{\lim\limits_{x \to a^+} f (x) = L.} This has the same definition as the limit except it requires x<a.{x<a.}

Left-hand limit: limxaf(x)=L.{\lim\limits_{x \to a^-} f (x) = L.} This has the same definition as the limit, except it requires x<a.{x<a.}

Limit at infinity : We say limxf(x)=L{\lim\limits_{x \to \infty} f (x) = L} if we can make f(x){f(x)} as close to L{L} as we want by taking x{x} large enough and positive.

There is a similar definition for limxf(x)=L{\lim\limits_{x \to -\infty} f (x) = L} except we require x{x} large and negative.

Infinite limit : We say limxaf(x)={\lim\limits_{x \to a} f (x) = \infty} if we can make f(x){f(x)} arbitrarily large (and positive) by taking x{x} sufficiently close to a{a} (on either side of a{a} without letting x=a.{x=a.}

There is a similar definition for limxaf(x)={\lim\limits_{x \to a} f (x) = - \infty} except we make f(x){f(x)} arbitrarily large and negative.


Relationship between the limit and one-sided limits:


  • limxaf(x)=Llimxa+f(x)=limxaf(x)=L\lim\limits_{x \to a} f (x) = L \rArr \lim\limits_{x \to a^+} f (x) = \lim\limits_{x \to a^-} f (x) = L


  • limxa+f(x)limxaf(x)limxaf(x)\lim\limits_{x \to a^+} f (x) \neq \lim\limits_{x \to a^-} f (x) \rArr \lim\limits_{x \to a} f (x) \rArr It means Limit Does Not Exist


Properties of Limits:


Assume limxaf(x)\lim\limits_{x \to a}{f(x)} and limxag(x)\lim\limits_{x \to a}{g(x)} both exist and cc is any number then,


  1. limxa[cf(x)]=climxaf(x)\lim\limits_{x \to a}{[cf(x)]} = c \lim\limits_{x \to a}{f(x)}


  2. limxa[f(x)±g(x)]=limxaf(x)±limxag(x)\lim\limits_{x \to a}{[f(x)\pm {g(x)}]} = \lim\limits_{x \to a}{f(x)\pm {\lim\limits_{x \to a} g(x)}}


  3. limxa[f(x)g(x)]=limxaf(x) limxag(x)\lim\limits_{x \to a}{[f(x){g(x)}]} = \lim\limits_{x \to a}{f(x) \space \lim\limits_{x \to a} {g(x)}}


  4. limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim\limits_{x \to a} {\bigg[\dfrac{f(x)}{g(x)}\bigg]} = \dfrac{\lim\limits_{x \to a}{f(x)}}{\lim\limits_{x \to a}{g(x)}} provided limxag(x)0{\lim\limits_{x \to a}{g(x)} \neq 0}


  5. limxa[f(x)]n=[limxa[f(x)]n\lim\limits_{x \to a}\big[f(x)]^n = \bigg[\lim\limits_{x \to a}[f(x)\bigg]^n


  6. limxa[f(x)n]=limxaf(x)n\lim\limits_{x \to a}{\bigg[\sqrt[n]{f(x)}\bigg] = \sqrt[n]{\lim\limits_{x \to a}f(x)}}


Limit Evaluations at ±{\pm}\infty:


  1. limxex=  & limxex=0\lim\limits_{x \to \infty}{e^x}= \infty \space \space \& \space \lim\limits_{x \to - \infty}{e^x} = 0


  2. limxin(x)= & limx0+in(x)=\lim\limits_{x \to \infty}in(x) = \infty \space \& \space \lim\limits_{x \to 0^+}in(x) = -\infty


  3. if r>0{r>0} then limxbxr=0\lim\limits_{x \to \infty} \dfrac{b}{x^r} = 0


  4. if r>0{r>0} and xr{x^r} is real for negative xx then limxbxr=0\lim\limits_{x \to -\infty} \dfrac{b}{x^r} = 0


  5. nn even : limx±xn=\lim\limits_{x \to \pm \infty}{x^n} = \infty


  6. nn odd : limxxn= & limxxn=\lim\limits_{x \to \infty}{x^n} = \infty \space \& \space \lim\limits_{x \to -\infty}{x^n} = -\infty


  7. nn even : limx±axn++bx+c=sgn(a)\lim\limits_{x \to \pm \infty}{ax^n}+ \dots + bx + c = sgn(a)\infty


  8. nn odd : limxaxn++bx+c=sgn(a)\lim\limits_{x \to \infty}{ax^n}+ \dots + bx + c = sgn(a)\infty


  9. nn odd : limxaxn++cx+d=sgn(a)\lim\limits_{x \to - \infty}{ax^n}+ \dots + cx + d = -sgn(a)\infty


Note : sgn(a)=1{sgn(a)=1} if a>0{a>0} and sgn(a)=1{sgn(a) = -1} if a<0.{a<0.}


Limit Evaluation Techniques:


Continuous Function


If f(x){f(x)} is Continuous at aa then limxaf(x)=f(a)\lim\limits_{x \to a}{f(x)=f(a)}


Continuous Functions and Composition


f(x){f(x)} is Continuous at bb and limxag(x)=(b)\lim\limits_{x \to a}{g(x)=(b)} then

limxaf(g(x)=f(limxag(x))=f(b)\lim\limits_{x \to a}{f(g(x)_=f} \bigg(\lim\limits_{x \to a}{g(x)\bigg)=f}(b)


Factor and Cancel


 limx2x2x2x22x=limx2(x2)(x+1)x(x2)=limx2x+1x=32\space \lim\limits_{x \to 2}\dfrac{x^2-x-2}{x^2-2x} = \lim\limits_{x \to 2}\dfrac{(x-2)(x+1)}{x(x-2)} =\lim\limits_{x \to 2}\dfrac{x+1}{x}= \dfrac{3}{2}


Rationalize Numerator/Denominator


 limx93xx281=limx93xx281 3+x3+x=limx99x(x281)(3+x)=limx91(x+9)(3+x)=1108\space \lim\limits_{x \to 9} \dfrac{3-\sqrt x}{x^2-81} = \lim\limits_{x \to 9} \dfrac{3-\sqrt x}{x^2-81} \space\dfrac{3+\sqrt x}{3+\sqrt x} = \lim\limits_{x \to 9} \dfrac{9-x}{(x^2-81)(3+\sqrt x)} = \lim\limits_{x \to 9} \dfrac{-1}{(x+9)(3+\sqrt x)} = - \dfrac{1}{108}


Combine Rational Expressions


 limh01h(hx+h1x)=limh01h(x(x+h)x(x+h))=limh01h(hx(x+h))=limh0(1)x(x+h))=1x2\space \lim\limits_{h \to 0} \dfrac{1}{h} \bigg(\dfrac{h}{x+h}-\dfrac{1}{x}\bigg) = \lim\limits_{h \to 0} \dfrac{1}{h} {\bigg(\dfrac{x-(x+h)}{x(x+h)}\bigg)} = \lim\limits_{h \to 0} \dfrac{1}{h} \bigg(\dfrac{-h}{x(x+h)}\bigg) = \lim\limits_{h \to 0} \bigg(\dfrac{-1)}{x(x+h)}\bigg) = -\dfrac{1}{x^2}


L Hospital's or L Hopital's Rule


if  limxaf(x)g(x)=00\space \lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \dfrac{0}{0} or limxaf(x)g(x)=±±\lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \dfrac{\pm \infty}{\pm \infty} then,

 limxaf(x)g(x)=limxaf(x)g(x),a\space \lim\limits_{x \to a} \dfrac{f(x)}{g(x)} = \lim\limits_{x \to a} \dfrac{f'(x)}{g'(x)}, a is a number, \infty or {- \infty}


Polynomials at Infinity


p(x){p(x)} and q(x){q(x)} are polynomials. To compute

limxa±p(x)q(x)\lim\limits_{x \to a \pm \infty} \dfrac{p(x)}{q(x)} factor largest Power of xx in q(x){q(x)} out of

both p(x){p(x)} and q(x){q(x)} then compute limit.

limx3x245x2x2=limxx2(34x2)x2(5x2)=limx34x25x2=32\lim\limits_{x \to - \infty} \dfrac{3x^2-4}{5x-2x^2} = \lim\limits_{x \to - \infty} \dfrac{x^2(3-\frac{4}{x^2})}{x^2(\frac{5}{x}{-2})} = \lim\limits_{x \to - \infty} \dfrac{3-\frac{4}{x^2}}{\frac{5}{x}{-2}} = -\dfrac{3}{2}


Piecewise Function


limx2g(x)\lim\limits_{x \to - 2}{g(x)} where g(x)={x2+5if x<213xif x2{g(x)} = \begin{cases} {x^2+5} &\text{if }{x<-2} \\ {1-3x} &\text{if } {x \geq -2} \end{cases}

Compute two one sided limits,

limx2g(x)=limx2x2+5=9\lim\limits_{x \to - 2^-}{g(x)} = \lim\limits_{x \to - 2^-}{x^2+5=9}

limx2+g(x)=limx2+13x=7\lim\limits_{x \to - 2^+}{g(x)} = \lim\limits_{x \to - 2^+}{1-3x=7}

One sided limits are different so limx2g(x)\lim\limits_{x \to - 2}{g(x)} dosen't
exist. If the two one sided limits had been equal
then limx2g(x)\lim\limits_{x \to - 2}{g(x)} would have existed and had the
same value.


Continuous Function Examples:


Partial list of continuous functions and the values of xx for which they are continuous.

  1. Polynomials for all xx.


  2. Rational function, except for xx's that give division by Zero.


  3. xn{\sqrt[n]x} (n odd) for all x.x.


  4. xn{\sqrt[n]x} (n even) for all x0.{x \geq 0}.


  5. ex{e^x} for all x.x.


  6. In (x)(x) for x>0.{x>0}.


  7. cos(x){\cos(x)} and sin(x){\sin(x)} for all x.x.


  8. tan(x){\tan(x)} and sec(x){\sec(x)} provided
    x,3π2,π2,π2,3π2, x \neq \dots, - \dfrac{3\pi}{2}, \dfrac{\pi}{2}, \dfrac{\pi}{2}, \dfrac{3\pi}{2}, \dots


  9. cot(x){\cot(x)} and csc(x){\csc(x)} provided
    x,2π,π,0,π,2π, x \neq \dots, {-2\pi}, {-\pi}, 0, {\pi}, {2\pi}, \dots


Intermediate Value Theorem:

Suppose that f(x){f(x)} is continuous on [a,b]{[a,b]} and let MM be any number between f(a){f(a)} and f(b).{f(b)}.

Then there exists a number cc such that a<c<b{a<c<b} and f(c))=M.{f(c))= M.}



If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]

Get Assignment Help\fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}}
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.

Related Pages:\color{red} \bold{Related \space Pages:}
Limit Formula Sheet
Continuity Formula Sheet
Differentiability Formula Sheet
Pre Calculus Calculators

Blog Information

Blog Author: Neetesh Kumar

Blog Publisher: Doubtlet


Leave a comment

Comments(0)


Your comment will be reviewed before it is published.