Sin( θ ) = y 1 = y (\theta) = \dfrac{y}{1} = y \space \space \space \space ( θ ) = 1 y = y Csc( θ ) = 1 y (\theta) = \dfrac{1}{y} ( θ ) = y 1
Cos( θ ) = x 1 = x (\theta) = \dfrac{x}{1} = x \space \space \space ( θ ) = 1 x = x Sec( θ ) = 1 x (\theta) = \dfrac{1}{x} ( θ ) = x 1
tan( θ ) = y x (\theta) = \dfrac{y}{x} \space \space \space \space \space \space \space \space \space \space \space \space \space ( θ ) = x y Cot( θ ) = x y (\theta) = \dfrac{x}{y} ( θ ) = y x
2. Facts and Properties:
Domain
The domain is all the values of θ \theta θ that can be plugged into the function.
sin ( θ ) \sin(\theta) sin ( θ ) , θ \theta θ can be any angle
cos ( θ ) \cos(\theta) cos ( θ ) , θ \theta θ can be any angle
tan ( θ ) \tan(\theta) tan ( θ ) , θ ≠ ( n + 1 2 ) π \theta \neq \left(n + \dfrac{1}{2}\right)\pi θ = ( n + 2 1 ) π , n = 0 , ± 1 , ± 2 , … n = 0, \pm 1, \pm 2, \dots n = 0 , ± 1 , ± 2 , …
csc ( θ ) \csc(\theta) csc ( θ ) , θ ≠ n π \theta \neq n\pi θ = nπ , n = 0 , ± 1 , ± 2 , … n = 0, \pm 1, \pm 2, \dots n = 0 , ± 1 , ± 2 , …
sec ( θ ) \sec(\theta) sec ( θ ) , θ ≠ ( n + 1 2 ) π \theta \neq \left(n + \dfrac{1}{2}\right)\pi θ = ( n + 2 1 ) π , n = 0 , ± 1 , ± 2 , … n = 0, \pm 1, \pm 2, \dots n = 0 , ± 1 , ± 2 , …
cot ( θ ) \cot(\theta) cot ( θ ) , θ ≠ n π \theta \neq n\pi θ = nπ , n = 0 , ± 1 , ± 2 , … n = 0, \pm 1, \pm 2, \dots n = 0 , ± 1 , ± 2 , …
Period
The period of a function is the number, T T T , such that f ( θ + T ) = f ( θ ) f(\theta + T) = f(\theta) f ( θ + T ) = f ( θ ) .
So, if ω \omega ω is a fixed number and θ \theta θ is any angle we have the following periods.
s i n ( ω θ ) → T = 2 π ω sin(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega} s in ( ω θ ) → T = ω 2 π
c o s ( ω θ ) → T = 2 π ω cos(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega} cos ( ω θ ) → T = ω 2 π
t a n ( ω θ ) → T = π ω tan(\omega \theta) \rightarrow T = \dfrac{\pi}{\omega} t an ( ω θ ) → T = ω π
c s c ( ω θ ) → T = 2 π ω csc(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega} csc ( ω θ ) → T = ω 2 π
s e c ( ω θ ) → T = 2 π ω sec(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega} sec ( ω θ ) → T = ω 2 π
c o t ( ω θ ) → T = π ω cot(\omega \theta) \rightarrow T = \dfrac{\pi}{\omega} co t ( ω θ ) → T = ω π
Range
The range is all possible values to get out of the function.
− 1 ≤ sin ( θ ) ≤ 1 − 1 ≤ cos ( θ ) ≤ 1 \space \space -1 \leq \sin(\theta) \leq 1 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -1 \leq \cos(\theta) \leq 1 − 1 ≤ sin ( θ ) ≤ 1 − 1 ≤ cos ( θ ) ≤ 1
− ∞ < tan ( θ ) < ∞ − ∞ < cot ( θ ) < ∞ \space \space -\infty < \tan(\theta) < \infty \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -\infty < \cot(\theta) < \infty − ∞ < tan ( θ ) < ∞ − ∞ < cot ( θ ) < ∞
sec ( θ ) ≥ 1 \space \space \space \sec(\theta) \geq 1 sec ( θ ) ≥ 1 & sec ( θ ) ≤ − 1 csc ( θ ) ≥ 1 \sec(\theta) \leq -1 \space \space \space \space \space \space \csc(\theta) \geq 1 sec ( θ ) ≤ − 1 csc ( θ ) ≥ 1 & csc ( θ ) ≤ − 1 \csc(\theta) \leq -1 csc ( θ ) ≤ − 1
3. Formulas and Identities:
Basic Identities
tan ( θ ) = sin ( θ ) cos ( θ ) cot ( θ ) = cos ( θ ) sin ( θ ) \tan(\theta) = \dfrac{\sin(\theta)}{\cos(\theta)} \space \space \space \space \space \space \space \cot(\theta) = \dfrac{\cos(\theta)}{\sin(\theta)} tan ( θ ) = cos ( θ ) sin ( θ ) cot ( θ ) = sin ( θ ) cos ( θ )
csc ( θ ) = 1 sin ( θ ) sin ( θ ) = 1 csc ( θ ) \csc(\theta) = \dfrac{1}{\sin(\theta)} \space \ \ \ \space \space \space \space \sin(\theta) = \dfrac{1}{\csc(\theta)} csc ( θ ) = sin ( θ ) 1 sin ( θ ) = csc ( θ ) 1
sec ( θ ) = 1 cos ( θ ) cos ( θ ) = 1 sec ( θ ) \sec(\theta) = \dfrac{1}{\cos(\theta)} \space \space \space \space \ \ \ \cos(\theta) = \dfrac{1}{\sec(\theta)} sec ( θ ) = cos ( θ ) 1 cos ( θ ) = sec ( θ ) 1
Pythagorean Identities
sin 2 ( θ ) + cos 2 ( θ ) = 1 \sin^2(\theta) + \cos^2(\theta) = 1 sin 2 ( θ ) + cos 2 ( θ ) = 1
tan 2 ( θ ) + 1 = sec 2 ( θ ) \tan^2(\theta) + 1 = \sec^2(\theta) tan 2 ( θ ) + 1 = sec 2 ( θ )
1 + cot 2 ( θ ) = csc 2 ( θ ) 1 + \cot^2(\theta) = \csc^2(\theta) 1 + cot 2 ( θ ) = csc 2 ( θ )
Even/Odd Formulas
sin ( − θ ) = − sin ( θ ) csc ( − θ ) = − csc ( θ ) \sin(-\theta) = - \sin(\theta) \space \space \ \ \ \csc(-\theta) = - \csc(\theta) sin ( − θ ) = − sin ( θ ) csc ( − θ ) = − csc ( θ )
cos ( − θ ) = cos ( θ ) sec ( − θ ) = sec ( θ ) \cos(-\theta) = \cos(\theta) \space \space \space \space \space \ \ \ \sec(-\theta) = \sec(\theta) cos ( − θ ) = cos ( θ ) sec ( − θ ) = sec ( θ )
tan ( − θ ) = − tan ( θ ) cot ( − θ ) = − cot ( θ ) \tan(-\theta) = -\tan(\theta) \space \ \ \ \cot(-\theta) = -\cot(\theta) tan ( − θ ) = − tan ( θ ) cot ( − θ ) = − cot ( θ )
Periodic Formulas
If n n n is an integer, then,
sin ( θ + 2 π n ) = sin ( θ ) csc ( θ + 2 π n ) = csc ( θ ) \sin(\theta + 2\pi n) = \sin(\theta) \space \space \space \space \space \space \space \csc(\theta + 2\pi n) = \csc(\theta) sin ( θ + 2 πn ) = sin ( θ ) csc ( θ + 2 πn ) = csc ( θ )
cos ( θ + 2 π n ) = cos ( θ ) sec ( θ + 2 π n ) = sec ( θ ) \cos(\theta + 2\pi n) = \cos(\theta) \space \space \space \ \ \ \sec(\theta + 2\pi n) = \sec(\theta) cos ( θ + 2 πn ) = cos ( θ ) sec ( θ + 2 πn ) = sec ( θ )
tan ( θ + π n ) = tan ( θ ) cot ( θ + π n ) = cot ( θ ) \tan(\theta + \pi n) = \tan(\theta) \space \space \space \space \space \space \space \cot(\theta + \pi n) = \cot(\theta) tan ( θ + πn ) = tan ( θ ) cot ( θ + πn ) = cot ( θ )
Degrees to Radians Formulas
Degree to radian Calculator
If x x x is an angle in degrees and t t t is an angle in radians, then
π 180 = t x ⇒ t = π x 180 \dfrac{\pi}{180} = \dfrac{t}{x} \Rightarrow t = \dfrac{\pi x}{180} 180 π = x t ⇒ t = 180 π x and x = 180 t π x = \dfrac{180t}{\pi} x = π 180 t
Double Angle Formulas
Cosine Calculator
sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) = 2 t a n ( θ ) 1 + tan 2 ( θ ) \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = \dfrac{2tan(\theta)}{1+\tan^2(\theta)} sin ( 2 θ ) = 2 sin ( θ ) cos ( θ ) = 1 + tan 2 ( θ ) 2 t an ( θ )
cos ( 2 θ ) \cos(2\theta) cos ( 2 θ )
= { cos 2 ( θ ) − sin 2 ( θ ) 2 cos 2 ( θ ) − 1 1 − 2 sin 2 ( θ ) 1 − tan 2 ( θ ) 1 + tan 2 ( θ ) = \begin{cases}
\cos^2(\theta) - \sin^2(\theta) \\
2 \cos^2(\theta) - 1 \\
1 - 2 \sin^2(\theta) \\
\dfrac{1-\tan^2(\theta)}{1+\tan^2(\theta)}
\end{cases} = ⎩ ⎨ ⎧ cos 2 ( θ ) − sin 2 ( θ ) 2 cos 2 ( θ ) − 1 1 − 2 sin 2 ( θ ) 1 + tan 2 ( θ ) 1 − tan 2 ( θ )
tan ( 2 θ ) = 2 tan ( θ ) 1 − tan 2 ( θ ) \tan(2\theta) = \dfrac{2 \tan(\theta)}{1 - \tan^2(\theta)} tan ( 2 θ ) = 1 − tan 2 ( θ ) 2 tan ( θ )
Triple Angle Formulas
sin ( 3 θ ) = 3 sin ( θ ) − 4 sin 3 ( θ ) \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) sin ( 3 θ ) = 3 sin ( θ ) − 4 sin 3 ( θ )
cos ( 3 θ ) = 4 cos 3 ( θ ) − 3 cos ( θ ) \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) cos ( 3 θ ) = 4 cos 3 ( θ ) − 3 cos ( θ )
tan ( 3 θ ) = 3 tan ( θ ) − tan 3 ( θ ) 1 − 3 tan 2 ( θ ) \tan(3\theta) = \dfrac{3\tan(\theta) - \tan^3(\theta)}{1-3\tan^2(\theta)} tan ( 3 θ ) = 1 − 3 tan 2 ( θ ) 3 tan ( θ ) − tan 3 ( θ )
Half Angle Formulas
sin ( θ 2 ) = ± 1 − cos ( θ ) 2 \sin \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(\theta)}{2}} sin ( 2 θ ) = ± 2 1 − cos ( θ )
cos ( θ 2 ) = ± 1 + cos ( θ ) 2 \cos \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 + \cos(\theta)}{2}} cos ( 2 θ ) = ± 2 1 + cos ( θ )
tan ( θ 2 ) = ± 1 − cos ( θ ) 1 + cos ( θ ) \tan \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(\theta)}{1 + \cos(\theta)}} tan ( 2 θ ) = ± 1 + cos ( θ ) 1 − cos ( θ )
Half Angle Formulas (alternate form)
sin 2 ( θ ) = 1 − cos ( 2 θ ) 2 \sin^2(\theta) = \dfrac{1 - \cos(2\theta)}{2} sin 2 ( θ ) = 2 1 − cos ( 2 θ )
cos 2 ( θ ) = 1 + cos ( 2 θ ) 2 \cos^2(\theta) = \dfrac{1 + \cos(2\theta)}{2} cos 2 ( θ ) = 2 1 + cos ( 2 θ )
tan 2 ( θ ) = 1 − cos ( 2 θ ) 1 + cos ( 2 θ ) \tan^2(\theta) = \dfrac{1 - \cos(2\theta)}{1 + \cos(2\theta)} tan 2 ( θ ) = 1 + cos ( 2 θ ) 1 − cos ( 2 θ )
Sum and Difference Formulas
Sine Calculator
sin ( a + b ) = sin ( a ) cos ( b ) + cos ( a ) sin ( b ) \sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b) sin ( a + b ) = sin ( a ) cos ( b ) + cos ( a ) sin ( b )
sin ( a − b ) = sin ( a ) cos ( b ) − cos ( a ) sin ( b ) \sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b) sin ( a − b ) = sin ( a ) cos ( b ) − cos ( a ) sin ( b )
cos ( a + b ) = cos ( a ) cos ( b ) − sin ( a ) sin ( b ) \cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) cos ( a + b ) = cos ( a ) cos ( b ) − sin ( a ) sin ( b )
cos ( a − b ) = cos ( a ) cos ( b ) + sin ( a ) sin ( b ) \cos(a - b) = \cos(a) \cos(b) + \sin(a) \sin(b) cos ( a − b ) = cos ( a ) cos ( b ) + sin ( a ) sin ( b )
tan ( a + b ) = tan ( a ) + tan ( b ) 1 − tan ( a ) tan ( b ) \tan(a + b) = \dfrac{\tan(a) + \tan(b)}{1 - \tan(a) \tan(b)} tan ( a + b ) = 1 − tan ( a ) tan ( b ) tan ( a ) + tan ( b )
tan ( a − b ) = tan ( a ) − tan ( b ) 1 + tan ( a ) tan ( b ) \tan(a - b) = \dfrac{\tan(a) - \tan(b)}{1 + \tan(a) \tan(b)} tan ( a − b ) = 1 + tan ( a ) tan ( b ) tan ( a ) − tan ( b )
cot ( a + b ) = cot ( a ) . cot ( b ) − 1 cot ( b ) + cot ( a ) \cot(a + b) = \dfrac{\cot(a).\cot(b) -1}{\cot(b) + \cot(a)} cot ( a + b ) = cot ( b ) + cot ( a ) cot ( a ) . cot ( b ) − 1
cot ( a − b ) = cot ( a ) . cot ( b ) + 1 cot ( b ) − cot ( a ) \cot(a - b) = \dfrac{\cot(a).\cot(b) +1}{\cot(b) - \cot(a)} cot ( a − b ) = cot ( b ) − cot ( a ) cot ( a ) . cot ( b ) + 1
Product to Sum Formulas
sin ( a ) sin ( b ) = 1 2 ( cos ( a − b ) − cos ( a + b ) ) \sin(a) \sin(b) = \dfrac{1}{2}\bigg(\cos(a - b) - \cos(a + b)\bigg) sin ( a ) sin ( b ) = 2 1 ( cos ( a − b ) − cos ( a + b ) )
cos ( a ) cos ( b ) = 1 2 ( cos ( a − b ) + cos ( a + b ) ) \cos(a) \cos(b) = \dfrac{1}{2}\bigg(\cos(a - b) + \cos(a + b)\bigg) cos ( a ) cos ( b ) = 2 1 ( cos ( a − b ) + cos ( a + b ) )
sin ( a ) cos ( b ) = 1 2 ( sin ( a + b ) + sin ( a − b ) ) \sin(a) \cos(b) = \dfrac{1}{2}\bigg(\sin(a + b) + \sin(a - b)\bigg) sin ( a ) cos ( b ) = 2 1 ( sin ( a + b ) + sin ( a − b ) )
cos ( a ) sin ( b ) = 1 2 ( sin ( a + b ) − sin ( a − b ) ) \cos(a) \sin(b) = \dfrac{1}{2}\bigg(\sin(a + b) - \sin(a - b)\bigg) cos ( a ) sin ( b ) = 2 1 ( sin ( a + b ) − sin ( a − b ) )
Sum to Product Formulas
sin ( a ) + sin ( b ) = 2 sin ( a + b 2 ) cos ( a − b 2 ) \sin(a) + \sin(b) = 2 \sin \left(\dfrac{a + b}{2}\right) \cos \left(\dfrac{a - b}{2}\right) sin ( a ) + sin ( b ) = 2 sin ( 2 a + b ) cos ( 2 a − b )
sin ( a ) − sin ( b ) = 2 cos ( a + b 2 ) sin ( a − b 2 ) \sin(a) - \sin(b) = 2 \cos \left(\dfrac{a + b}{2}\right) \sin \left(\dfrac{a - b}{2}\right) sin ( a ) − sin ( b ) = 2 cos ( 2 a + b ) sin ( 2 a − b )
cos ( a ) + cos ( b ) = 2 cos ( a + b 2 ) cos ( a − b 2 ) \cos(a) + \cos(b) = 2 \cos\left(\dfrac{a + b}{2}\right) \cos \left(\dfrac{a - b}{2}\right) cos ( a ) + cos ( b ) = 2 cos ( 2 a + b ) cos ( 2 a − b )
cos ( a ) − cos ( b ) = − 2 sin ( a + b 2 ) sin ( a − b 2 ) \cos(a) - \cos(b) = -2 \sin \left(\dfrac{a + b}{2}\right) \sin \left(\dfrac{a - b}{2}\right) cos ( a ) − cos ( b ) = − 2 sin ( 2 a + b ) sin ( 2 a − b )
Cofunction Formulas
sin ( π 2 − θ ) = cos ( θ ) cos ( π 2 − θ ) = sin ( θ ) \sin \left(\dfrac{\pi}{2} - \theta\right) = \cos(\theta) \space \space \space \space \ \ \ \cos \left(\dfrac{\pi}{2} - \theta\right) = \sin(\theta) sin ( 2 π − θ ) = cos ( θ ) cos ( 2 π − θ ) = sin ( θ )
csc ( π 2 − θ ) = sec ( θ ) sec ( π 2 − θ ) = csc ( θ ) \csc \left(\dfrac{\pi}{2} - \theta\right) = \sec(\theta) \space \space \space \space \ \ \ \sec \left(\dfrac{\pi}{2} - \theta\right) = \csc(\theta) csc ( 2 π − θ ) = sec ( θ ) sec ( 2 π − θ ) = csc ( θ )
tan ( π 2 − θ ) = cot ( θ ) cot ( π 2 − θ ) = tan ( θ ) \tan \left(\dfrac{\pi}{2} - \theta\right) = \cot(\theta) \space \space \space \ \ \ \cot \left(\frac{\pi}{2} - \theta\right) = \tan(\theta) tan ( 2 π − θ ) = cot ( θ ) cot ( 2 π − θ ) = tan ( θ )
Unit Circle Chart
For any ordered pair on the unit circle ( x , y ) (x, y) ( x , y ) : cos ( θ ) = x \space \cos(\theta) = x cos ( θ ) = x and sin ( θ ) = y \sin(\theta) = y sin ( θ ) = y
Example:
cos ( 7 π 4 ) = 1 2 , sin ( 4 π 3 ) = − 3 2 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \cos \left(\dfrac{7\pi}{4}\right) = \dfrac{1}{\sqrt{2}} \space , \space \space \space \sin \left(\dfrac{4\pi}{3}\right) = -\dfrac{\sqrt{3}}{2} cos ( 4 7 π ) = 2 1 , sin ( 3 4 π ) = − 2 3
4. Inverse Trig Functions:
Definition
Sine inverse Calculator
y = sin − 1 ( x ) y = \sin^{-1}(x) y = sin − 1 ( x ) ⇒ \Rightarrow ⇒ x = sin ( y ) x = \sin(y) x = sin ( y )
y = cos − 1 ( x ) y = \cos^{-1}(x) y = cos − 1 ( x ) ⇒ \Rightarrow ⇒ x = cos ( y ) x = \cos(y) x = cos ( y )
y = tan − 1 ( x ) y = \tan^{-1}(x) y = tan − 1 ( x ) ⇒ \Rightarrow ⇒ x = tan ( y ) x = \tan(y) x = tan ( y )
Domain and Range
Function Domain Range y = sin − 1 ( x ) y = \sin^{-1}(x) y = sin − 1 ( x ) − 1 ≤ x ≤ 1 \ \ -1 \leq x \leq 1 − 1 ≤ x ≤ 1 − π 2 ≤ y ≤ π 2 \ \ -\dfrac{\pi}{2} \leq y \leq \dfrac{\pi}{2} − 2 π ≤ y ≤ 2 π y = cos − 1 ( x ) y = \cos^{-1}(x) y = cos − 1 ( x ) − 1 ≤ x ≤ 1 \ \ -1 \leq x \leq 1 − 1 ≤ x ≤ 1 0 ≤ y ≤ π \ \ \ \ \ 0 \leq y \leq \pi 0 ≤ y ≤ π y = tan − 1 ( x ) y = \tan^{-1}(x) y = tan − 1 ( x ) − ∞ < x < ∞ \ \ -\infty < x < \infty − ∞ < x < ∞ − π 2 < y < π 2 \ \ -\dfrac{\pi}{2} < y < \dfrac{\pi}{2} − 2 π < y < 2 π
Inverse Properties
cos ( cos − 1 ( x ) ) = x cos − 1 ( cos ( θ ) ) = θ \cos \left(\cos^{-1}(x)\right) = x \space \space \space \space \space \ \ \cos^{-1} \left(\cos(\theta)\right) = \theta cos ( cos − 1 ( x ) ) = x cos − 1 ( cos ( θ ) ) = θ
sin ( sin − 1 ( x ) ) = x sin − 1 ( sin ( θ ) ) = θ \sin \left(\sin^{-1}(x)\right) = x \space \space \space \space \space \space \ \ \sin^{-1} \left(\sin(\theta)\right) = \theta sin ( sin − 1 ( x ) ) = x sin − 1 ( sin ( θ ) ) = θ
tan ( tan − 1 ( x ) ) = x tan − 1 ( tan ( θ ) ) = θ \tan \left(\tan^{-1}(x)\right) = x \space \space \space \space \ \ \tan^{-1} \left(\tan(\theta)\right) = \theta tan ( tan − 1 ( x ) ) = x tan − 1 ( tan ( θ ) ) = θ
Alternate Notation
sin − 1 ( x ) = arcsin ( x ) \sin^{-1}(x) = \arcsin(x) sin − 1 ( x ) = arcsin ( x )
cos − 1 ( x ) = arccos ( x ) \cos^{-1}(x) = \arccos(x) cos − 1 ( x ) = arccos ( x )
tan − 1 ( x ) = arctan ( x ) \tan^{-1}(x) = \arctan(x) tan − 1 ( x ) = arctan ( x )
5. Law of Sines, Cosines, and Tangents:
Law of Sines
sin ( α ) a = sin ( β ) b = sin ( γ ) c \dfrac{\sin(\alpha)}{a} = \dfrac{\sin(\beta)}{b} = \dfrac{\sin(\gamma)}{c} a sin ( α ) = b sin ( β ) = c sin ( γ )
Law of Cosines
a 2 = b 2 + c 2 − 2 b c cos ( α ) a^2 = b^2 + c^2 - 2bc \space \cos(\alpha) a 2 = b 2 + c 2 − 2 b c cos ( α )
b 2 = a 2 + c 2 − 2 a c cos ( β ) b^2 = a^2 + c^2 - 2ac \space \cos(\beta) b 2 = a 2 + c 2 − 2 a c cos ( β )
c 2 = a 2 + b 2 − 2 a b cos ( γ ) c^2 = a^2 + b^2 - 2ab \space \cos(\gamma) c 2 = a 2 + b 2 − 2 ab cos ( γ )
Mollweide’s Formula
a + b c = cos ( 1 2 ( α − β ) ) sin ( 1 2 γ ) \dfrac{a + b}{c} = \dfrac{\cos\left(\dfrac{1}{2}{(\alpha - \beta)}\right)}{\sin\left(\dfrac{1}{2}{\gamma}\right)} c a + b = sin ( 2 1 γ ) cos ( 2 1 ( α − β ) )
Law of Tangents
a − b a + b = tan ( 1 2 ( α − β ) ) tan ( 1 2 ( α + β ) ) \dfrac{a - b}{a + b} = \dfrac{\tan\left(\dfrac{1}{2}{(\alpha - \beta)}\right)}{\tan\left(\dfrac{1}{2}{(\alpha + \beta)}\right)} a + b a − b = tan ( 2 1 ( α + β ) ) tan ( 2 1 ( α − β ) )
b − c b + c = tan ( 1 2 ( β − γ ) ) tan ( 1 2 ( β + γ ) ) \dfrac{b - c}{b + c} = \dfrac{\tan\left(\dfrac{1}{2}{(\beta - \gamma)}\right)}{\tan\left(\dfrac{1}{2}{(\beta + \gamma)}\right)} b + c b − c = tan ( 2 1 ( β + γ ) ) tan ( 2 1 ( β − γ ) )
a − c a + c = tan ( 1 2 ( α − γ ) ) tan ( 1 2 ( α + γ ) ) \dfrac{a - c}{a + c} = \dfrac{\tan\left(\dfrac{1}{2}{(\alpha - \gamma)}\right)}{\tan\left(\dfrac{1}{2}{(\alpha + \gamma)}\right)} a + c a − c = tan ( 2 1 ( α + γ ) ) tan ( 2 1 ( α − γ ) )
If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]
Get Assignment Help \fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}} Get Assignment Help
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.
R e l a t e d P a g e s : \color{red} \bold{Related \space Pages:} Related Pages :
Trignometric-ratio Formula Sheet
Trignometric-equation Formula Sheet
Trigonometry Calculators
Pre Calculus Calculators
Leave a comment