image
image
image
image
image
image
image
image
image
image

Trigonometric Cheat Sheet: Essential Formulas & Identities

Master trigonometry with this comprehensive cheat sheet. Quickly access key formulas, identities, and trigonometric functions to solve problems efficiently. Perfect for students and professionals!
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

This Trigonometric cheat sheet is your quick reference guide to essential formulas, identities, and functions like sine, cosine, and tangent. It includes key relationships such as the Pythagorean identity, angle sum and difference formulas, and unit circle values. Perfect for quick problem-solving or exam prep.

Get Homework Help

Neetesh Kumar

Neetesh Kumar | September 16, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon



1. Definition of the Trig Functions:

Right angle Triangle definition

For this definition, we assume that
0<θ<π20 < \theta < \dfrac{\pi}{2} or 0<θ<900^\circ < \theta < 90^\circ.

Right angle triangle

Sin(θ)=oppositehypotenuse    (\theta) = \dfrac{\text{opposite}}{\text{hypotenuse}} \space \space \space \space Csc(θ)=hypotenuseopposite(\theta) = \dfrac{\text{hypotenuse}}{\text{opposite}}

cos(θ)=adjacenthypotenuse    (\theta) = \dfrac{\text{adjacent}}{\text{hypotenuse}} \space \space \space \space Sec(θ)=hypotenuseadjacent(\theta) = \dfrac{\text{hypotenuse}}{\text{adjacent}}

tan(θ)=oppositeadjacent       (\theta) = \dfrac{\text{opposite}}{\text{adjacent}} \space \space \space \space \space \space \space Cot(θ)=adjacentopposite(\theta) = \dfrac{\text{adjacent}}{\text{opposite}}

Unit Circle Definition

For this definition, θ\theta is any angle.

unit circle

Sin(θ)=y1=y    (\theta) = \dfrac{y}{1} = y \space \space \space \space Csc(θ)=1y(\theta) = \dfrac{1}{y}

Cos(θ)=x1=x   (\theta) = \dfrac{x}{1} = x \space \space \space Sec(θ)=1x(\theta) = \dfrac{1}{x}

tan(θ)=yx             (\theta) = \dfrac{y}{x} \space \space \space \space \space \space \space \space \space \space \space \space \space Cot(θ)=xy(\theta) = \dfrac{x}{y}

2. Facts and Properties:

Domain

The domain is all the values of θ\theta that can be plugged into the function.

sin(θ)\sin(\theta), θ\theta can be any angle

cos(θ)\cos(\theta), θ\theta can be any angle

tan(θ)\tan(\theta), θ(n+12)π\theta \neq \left(n + \dfrac{1}{2}\right)\pi, n=0,±1,±2,n = 0, \pm 1, \pm 2, \dots

csc(θ)\csc(\theta), θnπ\theta \neq n\pi, n=0,±1,±2,n = 0, \pm 1, \pm 2, \dots

sec(θ)\sec(\theta), θ(n+12)π\theta \neq \left(n + \dfrac{1}{2}\right)\pi, n=0,±1,±2,n = 0, \pm 1, \pm 2, \dots

cot(θ)\cot(\theta), θnπ\theta \neq n\pi, n=0,±1,±2,n = 0, \pm 1, \pm 2, \dots

Period

The period of a function is the number, TT, such that f(θ+T)=f(θ)f(\theta + T) = f(\theta).
So, if ω\omega is a fixed number and θ\theta is any angle we have the following periods.

sin(ωθ)T=2πωsin(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega}

cos(ωθ)T=2πωcos(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega}

tan(ωθ)T=πωtan(\omega \theta) \rightarrow T = \dfrac{\pi}{\omega}

csc(ωθ)T=2πωcsc(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega}

sec(ωθ)T=2πωsec(\omega \theta) \rightarrow T = \dfrac{2\pi}{\omega}

cot(ωθ)T=πωcot(\omega \theta) \rightarrow T = \dfrac{\pi}{\omega}

Range

The range is all possible values to get out of the function.

  1sin(θ)1                  1cos(θ)1\space \space -1 \leq \sin(\theta) \leq 1 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -1 \leq \cos(\theta) \leq 1

  <tan(θ)<               <cot(θ)<\space \space -\infty < \tan(\theta) < \infty \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space -\infty < \cot(\theta) < \infty

   sec(θ)1\space \space \space \sec(\theta) \geq 1 & sec(θ)1      csc(θ)1\sec(\theta) \leq -1 \space \space \space \space \space \space \csc(\theta) \geq 1 & csc(θ)1\csc(\theta) \leq -1

3. Formulas and Identities:

Basic Identities

tan(θ)=sin(θ)cos(θ)       cot(θ)=cos(θ)sin(θ)\tan(\theta) = \dfrac{\sin(\theta)}{\cos(\theta)} \space \space \space \space \space \space \space \cot(\theta) = \dfrac{\cos(\theta)}{\sin(\theta)}

csc(θ)=1sin(θ)        sin(θ)=1csc(θ)\csc(\theta) = \dfrac{1}{\sin(\theta)} \space \ \ \ \space \space \space \space \sin(\theta) = \dfrac{1}{\csc(\theta)}

sec(θ)=1cos(θ)       cos(θ)=1sec(θ)\sec(\theta) = \dfrac{1}{\cos(\theta)} \space \space \space \space \ \ \ \cos(\theta) = \dfrac{1}{\sec(\theta)}

Pythagorean Identities

sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1

tan2(θ)+1=sec2(θ)\tan^2(\theta) + 1 = \sec^2(\theta)

1+cot2(θ)=csc2(θ)1 + \cot^2(\theta) = \csc^2(\theta)

Even/Odd Formulas

sin(θ)=sin(θ)     csc(θ)=csc(θ)\sin(-\theta) = - \sin(\theta) \space \space \ \ \ \csc(-\theta) = - \csc(\theta)
cos(θ)=cos(θ)        sec(θ)=sec(θ)\cos(-\theta) = \cos(\theta) \space \space \space \space \space \ \ \ \sec(-\theta) = \sec(\theta)
tan(θ)=tan(θ)    cot(θ)=cot(θ)\tan(-\theta) = -\tan(\theta) \space \ \ \ \cot(-\theta) = -\cot(\theta)

Periodic Formulas

If nn is an integer, then,

sin(θ+2πn)=sin(θ)       csc(θ+2πn)=csc(θ)\sin(\theta + 2\pi n) = \sin(\theta) \space \space \space \space \space \space \space \csc(\theta + 2\pi n) = \csc(\theta)
cos(θ+2πn)=cos(θ)      sec(θ+2πn)=sec(θ)\cos(\theta + 2\pi n) = \cos(\theta) \space \space \space \ \ \ \sec(\theta + 2\pi n) = \sec(\theta)
tan(θ+πn)=tan(θ)       cot(θ+πn)=cot(θ)\tan(\theta + \pi n) = \tan(\theta) \space \space \space \space \space \space \space \cot(\theta + \pi n) = \cot(\theta)

Degrees to Radians Formulas

Degree to radian Calculator
If xx is an angle in degrees and tt is an angle in radians, then

π180=txt=πx180\dfrac{\pi}{180} = \dfrac{t}{x} \Rightarrow t = \dfrac{\pi x}{180} and x=180tπx = \dfrac{180t}{\pi}

Double Angle Formulas

Cosine Calculator
sin(2θ)=2sin(θ)cos(θ)=2tan(θ)1+tan2(θ)\sin(2\theta) = 2 \sin(\theta) \cos(\theta) = \dfrac{2tan(\theta)}{1+\tan^2(\theta)}

cos(2θ)\cos(2\theta) ={cos2(θ)sin2(θ)2cos2(θ)112sin2(θ)1tan2(θ)1+tan2(θ)= \begin{cases} \cos^2(\theta) - \sin^2(\theta) \\ 2 \cos^2(\theta) - 1 \\ 1 - 2 \sin^2(\theta) \\ \dfrac{1-\tan^2(\theta)}{1+\tan^2(\theta)} \end{cases}

tan(2θ)=2tan(θ)1tan2(θ)\tan(2\theta) = \dfrac{2 \tan(\theta)}{1 - \tan^2(\theta)}

Triple Angle Formulas

sin(3θ)=3sin(θ)4sin3(θ)\sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta)

cos(3θ)=4cos3(θ)3cos(θ)\cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta)

tan(3θ)=3tan(θ)tan3(θ)13tan2(θ)\tan(3\theta) = \dfrac{3\tan(\theta) - \tan^3(\theta)}{1-3\tan^2(\theta)}

Half Angle Formulas

sin(θ2)=±1cos(θ)2\sin \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(\theta)}{2}}

cos(θ2)=±1+cos(θ)2\cos \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 + \cos(\theta)}{2}}

tan(θ2)=±1cos(θ)1+cos(θ)\tan \left(\dfrac{\theta}{2}\right) = \pm \sqrt{\dfrac{1 - \cos(\theta)}{1 + \cos(\theta)}}

Half Angle Formulas (alternate form)

sin2(θ)=1cos(2θ)2\sin^2(\theta) = \dfrac{1 - \cos(2\theta)}{2}

cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \dfrac{1 + \cos(2\theta)}{2}

tan2(θ)=1cos(2θ)1+cos(2θ)\tan^2(\theta) = \dfrac{1 - \cos(2\theta)}{1 + \cos(2\theta)}

Sum and Difference Formulas

Sine Calculator
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)\sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b)

sin(ab)=sin(a)cos(b)cos(a)sin(b)\sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b)

cos(a+b)=cos(a)cos(b)sin(a)sin(b)\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b)

cos(ab)=cos(a)cos(b)+sin(a)sin(b)\cos(a - b) = \cos(a) \cos(b) + \sin(a) \sin(b)

tan(a+b)=tan(a)+tan(b)1tan(a)tan(b)\tan(a + b) = \dfrac{\tan(a) + \tan(b)}{1 - \tan(a) \tan(b)}

tan(ab)=tan(a)tan(b)1+tan(a)tan(b)\tan(a - b) = \dfrac{\tan(a) - \tan(b)}{1 + \tan(a) \tan(b)}

cot(a+b)=cot(a).cot(b)1cot(b)+cot(a)\cot(a + b) = \dfrac{\cot(a).\cot(b) -1}{\cot(b) + \cot(a)}

cot(ab)=cot(a).cot(b)+1cot(b)cot(a)\cot(a - b) = \dfrac{\cot(a).\cot(b) +1}{\cot(b) - \cot(a)}

Product to Sum Formulas

sin(a)sin(b)=12(cos(ab)cos(a+b))\sin(a) \sin(b) = \dfrac{1}{2}\bigg(\cos(a - b) - \cos(a + b)\bigg)

cos(a)cos(b)=12(cos(ab)+cos(a+b))\cos(a) \cos(b) = \dfrac{1}{2}\bigg(\cos(a - b) + \cos(a + b)\bigg)

sin(a)cos(b)=12(sin(a+b)+sin(ab))\sin(a) \cos(b) = \dfrac{1}{2}\bigg(\sin(a + b) + \sin(a - b)\bigg)

cos(a)sin(b)=12(sin(a+b)sin(ab))\cos(a) \sin(b) = \dfrac{1}{2}\bigg(\sin(a + b) - \sin(a - b)\bigg)

Sum to Product Formulas

sin(a)+sin(b)=2sin(a+b2)cos(ab2)\sin(a) + \sin(b) = 2 \sin \left(\dfrac{a + b}{2}\right) \cos \left(\dfrac{a - b}{2}\right)

sin(a)sin(b)=2cos(a+b2)sin(ab2)\sin(a) - \sin(b) = 2 \cos \left(\dfrac{a + b}{2}\right) \sin \left(\dfrac{a - b}{2}\right)

cos(a)+cos(b)=2cos(a+b2)cos(ab2)\cos(a) + \cos(b) = 2 \cos\left(\dfrac{a + b}{2}\right) \cos \left(\dfrac{a - b}{2}\right)

cos(a)cos(b)=2sin(a+b2)sin(ab2)\cos(a) - \cos(b) = -2 \sin \left(\dfrac{a + b}{2}\right) \sin \left(\dfrac{a - b}{2}\right)

Cofunction Formulas

sin(π2θ)=cos(θ)       cos(π2θ)=sin(θ)\sin \left(\dfrac{\pi}{2} - \theta\right) = \cos(\theta) \space \space \space \space \ \ \ \cos \left(\dfrac{\pi}{2} - \theta\right) = \sin(\theta)

csc(π2θ)=sec(θ)       sec(π2θ)=csc(θ)\csc \left(\dfrac{\pi}{2} - \theta\right) = \sec(\theta) \space \space \space \space \ \ \ \sec \left(\dfrac{\pi}{2} - \theta\right) = \csc(\theta)

tan(π2θ)=cot(θ)      cot(π2θ)=tan(θ)\tan \left(\dfrac{\pi}{2} - \theta\right) = \cot(\theta) \space \space \space \ \ \ \cot \left(\frac{\pi}{2} - \theta\right) = \tan(\theta)

Unit Circle Chart

For any ordered pair on the unit circle (x,y)(x, y):  cos(θ)=x \space \cos(\theta) = x and sin(θ)=y\sin(\theta) = y

	unit circle angles

Example:

              cos(7π4)=12 ,   sin(4π3)=32\space \space \space \space \space \space \space \space \space \space \space \space \space \space \cos \left(\dfrac{7\pi}{4}\right) = \dfrac{1}{\sqrt{2}} \space , \space \space \space \sin \left(\dfrac{4\pi}{3}\right) = -\dfrac{\sqrt{3}}{2}

4. Inverse Trig Functions:

Definition

Sine inverse Calculator
y=sin1(x)y = \sin^{-1}(x) \Rightarrow x=sin(y)x = \sin(y)

y=cos1(x)y = \cos^{-1}(x) \Rightarrow x=cos(y)x = \cos(y)

y=tan1(x)y = \tan^{-1}(x) \Rightarrow x=tan(y)x = \tan(y)

Domain and Range

FunctionDomainRange
y=sin1(x)y = \sin^{-1}(x)  1x1\ \ -1 \leq x \leq 1  π2yπ2 \ \ -\dfrac{\pi}{2} \leq y \leq \dfrac{\pi}{2}
y=cos1(x)y = \cos^{-1}(x)  1x1\ \ -1 \leq x \leq 1     0yπ\ \ \ \ \ 0 \leq y \leq \pi
y=tan1(x)y = \tan^{-1}(x)  <x<\ \ -\infty < x < \infty  π2<y<π2\ \ -\dfrac{\pi}{2} < y < \dfrac{\pi}{2}

Inverse Properties

cos(cos1(x))=x       cos1(cos(θ))=θ\cos \left(\cos^{-1}(x)\right) = x \space \space \space \space \space \ \ \cos^{-1} \left(\cos(\theta)\right) = \theta

sin(sin1(x))=x        sin1(sin(θ))=θ\sin \left(\sin^{-1}(x)\right) = x \space \space \space \space \space \space \ \ \sin^{-1} \left(\sin(\theta)\right) = \theta

tan(tan1(x))=x      tan1(tan(θ))=θ\tan \left(\tan^{-1}(x)\right) = x \space \space \space \space \ \ \tan^{-1} \left(\tan(\theta)\right) = \theta

Alternate Notation

sin1(x)=arcsin(x)\sin^{-1}(x) = \arcsin(x)

cos1(x)=arccos(x)\cos^{-1}(x) = \arccos(x)

tan1(x)=arctan(x)\tan^{-1}(x) = \arctan(x)

5. Law of Sines, Cosines, and Tangents:

triangle law of sines cosines

Law of Sines

sin(α)a=sin(β)b=sin(γ)c\dfrac{\sin(\alpha)}{a} = \dfrac{\sin(\beta)}{b} = \dfrac{\sin(\gamma)}{c}

Law of Cosines

a2=b2+c22bc cos(α)a^2 = b^2 + c^2 - 2bc \space \cos(\alpha)

b2=a2+c22ac cos(β)b^2 = a^2 + c^2 - 2ac \space \cos(\beta)

c2=a2+b22ab cos(γ)c^2 = a^2 + b^2 - 2ab \space \cos(\gamma)

Mollweide’s Formula

a+bc=cos(12(αβ))sin(12γ)\dfrac{a + b}{c} = \dfrac{\cos\left(\dfrac{1}{2}{(\alpha - \beta)}\right)}{\sin\left(\dfrac{1}{2}{\gamma}\right)}

Law of Tangents

aba+b=tan(12(αβ))tan(12(α+β))\dfrac{a - b}{a + b} = \dfrac{\tan\left(\dfrac{1}{2}{(\alpha - \beta)}\right)}{\tan\left(\dfrac{1}{2}{(\alpha + \beta)}\right)}

bcb+c=tan(12(βγ))tan(12(β+γ))\dfrac{b - c}{b + c} = \dfrac{\tan\left(\dfrac{1}{2}{(\beta - \gamma)}\right)}{\tan\left(\dfrac{1}{2}{(\beta + \gamma)}\right)}

aca+c=tan(12(αγ))tan(12(α+γ))\dfrac{a - c}{a + c} = \dfrac{\tan\left(\dfrac{1}{2}{(\alpha - \gamma)}\right)}{\tan\left(\dfrac{1}{2}{(\alpha + \gamma)}\right)}

If you have any suggestions regarding the improvement of the content of this page, please write to me at My Official Email Address: [email protected]

Get Assignment Help\fcolorbox{black}{lightpink}{\color{blue}{Get Assignment Help}}
Are you Stuck on homework, assignments, projects, quizzes, labs, midterms, or exams?
To get connected to our tutors in real time. Sign up and get registered with us.

Related Pages:\color{red} \bold{Related \space Pages:}
Trignometric-ratio Formula Sheet
Trignometric-equation Formula Sheet
Trigonometry Calculators
Pre Calculus Calculators

Blog Information

Blog Author: Neetesh Kumar

Blog Publisher: Doubtlet


Leave a comment

Comments(0)


Your comment will be reviewed before it is published.