image
image
image
image
image
image
image
image
image
image

Binomial-theorem Formula Sheet

This page will help you to revise formulas and concepts of Binomial-theorem instantly for various exams.
image
image
image
image
image
image
image
image

The binomial series expansion expresses the power of a binomial (a two-term expression) as an infinite sum of terms involving binomial coefficients, following the formula
(a+b)n=k=1n(nk)ankbk(a+b)^n = \displaystyle\sum_{k=1}^n \binom{n}{k} a^{n-k}b^k

Neetesh Kumar | May 08, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Binomial Expansion Formula :

(x+y)n=nC0xn+nC1xn1y+nC2xn2y2+....+nCrxnryr+nCnyn=r=0nnCrxnryr(x + y)^n =n_{C_0}x^n + n_{C_1}x^{n-1}y + n_{C_2}x^{n-2}y^2 + .... + n_{C_r}x^{n-r}y^r + n_{C_n}y^n = \displaystyle\sum_{r=0}^n n_{C_r}x^{n-r}y^r where n \in N.

2. Important Terms:

General Terms:\bold{General \space Terms:} The general term or the (r+1)th^{th} term in the expansion of (x+y)n^{n} is given by
Tr+1=nCrxnryrT_{r+1} = n_{C_r}x^{n-r}y^r

Middle Term:\bold{Middle \space Term:} The middle terms in the expansion of (x+y)n^n are:

  • If n is even, there is only one middle term which is given by
    Tn+22=nCn2xn2yn2T_{\frac{n+2}{2}} = n_{C_\frac{n}{2}}x^{\frac{n}{2}}y^{\frac{n}{2}}

  • If n is odd, there are two middle terms, which are Tn+12T_{\frac{n+1}{2}} and T[n+12]+1T_{[\frac{n+1}{2}] + 1}

Term Independent of x:\bold{Term \space Independent \space of \space x:} Term independent of x contains no x;
Hence, find the value of r for which the exponent of x is zero.

3. Some results on Binomial Coefficients:

(a)\bold{(a)} nCx=nCyx=yn_{C_x} = n_{C_y} \Rightarrow x = y or x+y=nx+y=n
(b)\bold{(b)} nCr1+nCr=n+1Crn_{C_{r-1}} + n_{C_r} = {n+1}_{C_r}
(c)\bold{(c)} C0+C1+C2+....+Cn=2n,C_0 + C_1 + C_2 + .... + C_n = 2^n, where Cr=nCrC_r = n_{C_r}
(d)\bold{(d)} C0+C2+C4+....=C1+C3+C5+....=2n1,C_0 + C_2 + C_4 + .... = C_1 + C_3 + C_5 + .... = 2^{n-1}, where Cr=nCrC_r = n_{C_r}
(c)\bold{(c)} C02+C12+C22+....+Cn2=2nCn=(2n)!n!n!,C_0^2 + C_1^2 + C_2^2 + .... + C_n^2 = 2n_{C_n} = \frac{(2n)!}{n!n!}, where Cr=nCrC_r = n_{C_r}

4. Greatest Coefficients and Term in the expansion of (x+a)n^n:

(a)\bold{(a)} If n is even, greatest binomial coefficients is nCn2n_{C_\frac{n}{2}}
If n is odd, greatest binomial coefficients is nCn12n_{C_\frac{n-1}{2}} or nCn+12n_{C_\frac{n+1}{2}}
(b)\bold{(b)} For Greatest Term:
Greatest term={Tp and Tp+1if n+1xa+1 is an integer equal to pTq+1if n+1xa+1 is non integer and(q,q+1),qIGreatest \space term = \begin{cases} T_p \space and \space T_{p+1} &\text{if } \frac{n+1}{|\frac{x}{a}|+1} \space is \space an \space integer \space equal \space to \space p \\ T_{q+1} &\text{if } \frac{n+1}{|\frac{x}{a}|+1} \space is \space non \space integer \space and \in (q, q+1), q \in I \end{cases}

5. Binomial Theorem for Negative and fractional Indices:

If n \in R, then (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3+....(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + .... \infty provided | x | < 1
Note:
(i)\bold{(i)} (1x)1=1+x+x2+x3+....(1-x)^{-1} = 1 + x + x^2 + x^3 + .... \infty
(ii)\bold{(ii)} (1+x)1=1x+x2x3+....(1+x)^{-1} = 1 - x + x^2 - x^3 + .... \infty
(iii)\bold{(iii)} (1x)2=1+2x+3x2+4x3+....(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + .... \infty
(iv)\bold{(iv)} (1+x)2=12x+3x24x3+....(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + .... \infty

6. Exponential Series:

(a)\bold{(a)} ex=1+x1!+x22!+x33!+....;e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!}+.... \infty; where x may be any real or complex number and e = limx(1+1n)n\lim\limits_{x\to \infty}(1+\frac{1}{n})^n

(b)\bold{(b)} ax=1+x1!lna+x22!ln2a+x23!ln3a+....,a^x = 1 + \frac{x}{1!}lna + \frac{x^2}{2!}ln^2a + \frac{x^2}{3!}ln^3a + .... \infty, where a > 0

7. Logarithmic Series:

(a)\bold{(a)} ln(1+x)=xx22+x33x44+....ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + .... \infty where -1 < x \le 1
(b)\bold{(b)} ln(1x)=xx22x33x44....ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - .... \infty where -1 \le x < 1
(c)\bold{(c)} ln(1+x1x)=2(x+x33+x55+....)ln(\frac{1+x}{1-x}) = 2(x + \frac{x^3}{3} + \frac{x^5}{5} + .... \infty) where | x | < 1

Related Pages:\color{red} \bold{Related \space Pages:}
Binomial Expansion Calculators
Vector operation Calculators
Vector Formula sheet

image
image
image
image
image
image
image
image
image
image