image
image
image
image
image
image
image
image
image
image

Complex-number Formula Sheet

This page will help you to revise formulas and concepts of Complex-number instantly for various exams.
image
image
image
image
image
image
image
image

Complex numbers extend the real numbers by including imaginary numbers and are expressed as a+bi,
where a is the real part, b is the imaginary part, and i is the imaginary unit satisfying i2^2 = −1.

Neetesh Kumar | May 14, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Definition:

Complex numbers are defined as expressions of the form a + ib where a, b \in R & i = 1.\sqrt{-1}. It is denoted by z, i.e. z = a + ib where 'a' is called the Real Part of z (Re z), and 'b' is called the Imaginary Part of z (Im z).

  • Complex Number={Purely Realif b=0Imaginaryif b0Purely Imaginaryif a=0 = \begin{cases} Purely \space Real &\text{if } b = 0 \\ Imaginary &\text{if } b \ne 0 \\ Purely \space Imaginary &\text{if } a = 0 \end{cases}

Note:\bold{Note:}
(i)\bold{(i)} The set R of real numbers is a subset of the Complex Numbers. Hence, the Complex Number system is N \subset W \subset I \subset Q \subset R \subset C
(ii)\bold{(ii)} Zero is purely real and purely imaginary but not imaginary.
(iii)\bold{(iii)} i=1i = \sqrt{-1} is called the imaginary unit. Also i2=1;i3=i;i4=1i^2 = -1; i^3 = -i; i^4 = 1 etc.
(iv)\bold{(iv)} ab=ab\sqrt{a}\sqrt{b} = \sqrt{ab} only if at least one of a or b is non-negative.

2. Conjugate Complex:

If z = a + ib, then its conjugate complex is obtained by changing the sign of its imaginary part & is denoted by zˉ\bar{z}, i.e., zˉ\bar{z} = a - ib.
(i)\bold{(i)} zz + zˉ\bar{z} = 2Re(z)
(ii)\bold{(ii)} zz - zˉ\bar{z} = 2iiIm(z)
(iii)\bold{(iii)} zzˉz\bar{z} = a2+b2a^2 + b^2
(iv)\bold{(iv)} If z is purely real then zz - zˉ=0\bar{z} = 0
(v)\bold{(v)} If z is purely imaginary then zz + zˉ=0\bar{z} = 0
(vi)\bold{(vi)} Inverse of a complex number can be obtained by multiplying and dividing by its complex conjugate.

3. Representation of a Complex Number:

(a) Cartesian Form:\bold{(a) \space Cartesian \space Form:} (Geometric Representation)
Every complex number z = x + iy can be represented by a point on the cartesian plane known as a complex plane (Argand diagram) by the ordered pair (x, y). Length OA is called the modulus of the complex number denoted by |z| & θ\theta is called the principal argument or amplitude where θ(π,π]\theta \in (-\pi, \pi]

We can also write |z| = x2+y2\sqrt{x^2 + y^2} & θ=tan1(yx)\theta = tan^{-1}(\frac{y}{x}) (angle made by OA with positive x -axis, x > 0 Geometrically, |z| represents the distance of point A from the origin. (|z| \ge 1)

(b)\bold{(b)} Polar Form: (Trignometric Representation)
z = r(cosθ\theta + isinθ\theta) where |z| = r; arg(z) = θ;\theta; zˉ=\bar{z}= r(cosθ\theta - isinθ\theta)
we can also write cos θ\theta + isin θ\theta as CIS θ\theta
Eulers Formula:\bold{Euler's \space Formula:}
The formula eiθ=cosθ+isinθe^{i\theta} = cos\theta + isin\theta is called Euler's Formula.
We can also write Cosθ=eiθ+eiθ2\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} & Sinθ=eiθeiθ2i\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} are known as Euler's Identities.

(c) Exponential Representation:\bold{(c) \space Exponential \space Representation:}
Let z be a complex number such that |z| = r and arg z = θ\theta, then z = r.eiθe^{i\theta}

4. Important Properties of Complex Conjugate:

(a)\bold{(a)} zˉ=z\overline{\bar{z}} = z
(b)\bold{(b)} z1+z2=z1+z2\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}
(c)\bold{(c)} z1z2=z1z2\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}
(d)\bold{(d)} z1z2=z1.z2\overline{z_1 z_2} = \overline{z_1}. \overline{z_2}
(e)\bold{(e)} (z1z2)=z1z2;\overline{(\frac{z_1}{z_2})} = \frac{\overline{z_1}}{\overline{z_2}}; where z20z_2 \ne 0
(f)\bold{(f)} If f is a polynomial with a real coefficient such that f(α+iβ\alpha + i\beta) = x + iy, then f(αiβ\alpha - i\beta) = x - iy

5. Properties of Modulus:

(a)\bold{(a)} |z| \ge 0
(b)\bold{(b)} |z| \ge Re (z)
(c)\bold{(c)} |z| \ge Im (z)
(d)\bold{(d)} |z| = | z\overline{z} | = | -z | = | z-\overline{z} |
(e)\bold{(e)} zzz\overline{z} = z2|z|^2
(f)\bold{(f)} |z1z2z_1z_2| = z1.z2|z_1|.|z_2|
(g)\bold{(g)} |z1z2\frac{z_1}{z_2}| = z1z2,\frac{|z_1|}{|z_2|}, z20z_2 \ne 0
(h)\bold{(h)} |znz^n| = zn|z|^n
(i)\bold{(i)} z1+z22=z12+z22+2Re(z1z2)|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2Re(z_1\overline{z_2}) or z1+z22=z12+z22+2z1z2cos(θ1θ2)|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|cos(\theta_1 - \theta_2)
(j)\bold{(j)} z1+z22+z1z22=2[z12+z22]|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]
(k)\bold{(k)} z1z2z1+z2z1+z2||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2| [Triangular Inequality]
(l)\bold{(l)} z1z2z1z2z1+z2||z_1| - |z_2|| \le |z_1 - z_2| \le |z_1| + |z_2| [Triangular Inequality]
(m)\bold{(m)} If |z + 1z\frac{1}{z}| = a (a>0), then max |z| = a+a2+42\frac{a + \sqrt{a^2+4}}{2} & min |z| = a+a2+42\frac{-a + \sqrt{a^2+4}}{2}

6. Properties of Amplitude:

(a)\bold{(a)}

  • amp(z1.z2z_1.z_2) = amp z1+z_1 + amp z2+2kπ;kIz_2 + 2k\pi; k \in I
  • amp(z1z2\frac{z_1}{z_2}) = amp z1z_1 - amp z2+2kπ;kIz_2 + 2k\pi; k \in I
  • amp(zn)(z^n) = n amp(z) + 2kπk\pi where value of k is such that RHS lies in (π,π](-\pi, \pi]

(b)\bold{(b)} log(z) = log(reiθe^{i\theta}) = logr + iθi\theta = log |z| + i amp(z)

7. De-Moiver's Theorem:

The value of (cosθ+isinθ)n(cos\theta + isin\theta)^n is (cosnθ+isinnθ)(cosn\theta + isinn\theta) where n is an integer and it is one of the values of (cosθ+isinθ)n(cos\theta + isin\theta)^n if n is a rational number of the form pq\frac{p}{q}, where p and q are Co-Prime numbers.

8. Cube Root of Unity:

(a)\bold{(a)} The cube roots of unity are 1, ω=1+i32=ei2π3\omega = \frac{-1+i\sqrt{3}}{2} = e^{i\frac{2\pi}{3}} and ω2=1i32=ei4π3\omega^2 = \frac{-1-i\sqrt{3}}{2} = e^{i\frac{4\pi}{3}}
(b)\bold{(b)} 1 + ω+ω2=0,ω3=1\omega + \omega^2 = 0, \omega^3 = 1 (in general)
1 + ωr+ω2r\omega^r + \omega^{2r} ={0if r is not integral multiple of 33if r is multiple of 3 = \begin{cases} 0 &\text{if } r \space is \space not \space integral \space multiple \space of \space 3 \\ 3 &\text{if } r \space is \space multiple \space of \space 3 \\ \end{cases}
(c)\bold{(c)}

  • a2+b2+c2abbcca=(a+bω+cω2)(a+bω2+cω)a^2+b^2+c^2-ab-bc-ca = (a+b\omega+c\omega^2)(a+b\omega^2+c\omega)
  • a3+b3=(a+b)(a+ωb)(a+ω2b)a^3+b^3 = (a+b)(a+\omega b)(a+\omega^2b)
  • a3b3=(ab)(aωb)(aω2b)a^3-b^3 = (a-b)(a-\omega b)(a-\omega^2b)
  • x2+x+1=(xω)(xω2)x^2 +x + 1 = (x-\omega)(x-\omega^2)

9. Square root of a Complex number:

a+ib\sqrt{a+ib} ={±(z+a2+iza2)if b>0±(z+a2iza2)if b<0 = \begin{cases} \plusmn (\frac{\sqrt{|z|+a}}{2} + i\frac{\sqrt{|z|-a}}{2}) &\text{if } b > 0 \\ \plusmn (\frac{\sqrt{|z|+a}}{2} - i\frac{\sqrt{|z|-a}}{2}) &\text{if } b < 0 \\ \end{cases} where |z| = a2+b2\sqrt{a^2 + b^2}

10. Rotation of a Complex number:

z2z0z2z0=z1z0z1z0eiθ\frac{z_2-z_0}{|z_2-z_0|} = \frac{z_1-z_0}{|z_1-z_0|}e^{i\theta} Take θ\theta in anticlockwise direction.

11. Geometrical formulas in complex numbers:

(a) Distance Formula:\bold{(a) \space Distance \space Formula:} z1z2|z_1 - z_2| is represented as distance between the points z1z_1 and z2z_2 on the argand plane.
(b) Section Formula:\bold{(b) \space Section \space Formula:} If z1z_1 and z2z_2 are two complex numbers then the complex number z = nz1+mz2m+n\frac{nz_1+mz_2}{m+n} divides the join of z1z_1 and z2z_2 in the ratio of m:n
(c)\bold{(c)} If the vertices A, B, and C of a triangle represent the complex numbers z1,z2z_1, z_2 and z3z_3 respectively, then :

  • Centroid of the Δ\DeltaABC = z1+z2+z33\frac{z_1+z_2+z_3}{3}

  • Orthocenter of the Δ\DeltaABC = (asecA)z1+(bsecB)z2+(csecC)z3asecA+bsecB+csecC\frac{(asecA)z_1 + (bsecB)z_2 + (csecC)z_3}{asecA + bsecB + csecC} or z1tanA+z2tanB+z3tanCtanA+tanB+tanC\frac{z_1 tan A + z_2 tan B + z_3 tan C}{tanA + tanB + tanC}

  • Circumcenter of the Δ\DeltaABC = z1sin2A+z2sin2B+z3sin2Csin2A+sin2B+sin2C\frac{z_1 sin 2A + z_2 sin 2B + z_3 sin 2C}{sin2A + sin2B + sin2C}

(d) Equilateral Triangle:\bold{(d) \space Equilateral \space Triangle:}

  • z1z2l=z3z2leiπ3.....\frac{z_1 - z_2}{l} = \frac{z_3 - z_2}{l}e^{\frac{i\pi}{3}}..... (i)
  • z2z3l=z1z3leiπ3.....\frac{z_2 - z_3}{l} = \frac{z_1 - z_3}{l}e^{\frac{i\pi}{3}}..... (ii)
  • from (i) and (ii)
  • \Rightarrow z12+z22+z32=z!z2+z2z3+z3z1z_1^2+z_2^2+z_3^2 = z_!z_2+z_2z_3+z_3z_1 or 1z1z2+1z2z3+1z3z1=0\frac{1}{z_1-z_2} + \frac{1}{z_2-z_3} + \frac{1}{z_3-z_1} = 0

(e) Isocelles Triangle:\bold{(e) \space Isocelles \space Triangle:}
then 4cos2α(z1z2)(z3z1)=(z3z2)2^2\alpha(z_1-z_2)(z_3-z_1) = (z_3-z_2)^2

(f)\bold{(f)} Area of Δ\DeltaABC = 14z1z11z2z21z3z31\frac{1}{4} \begin{vmatrix} z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \\ z_3 & \overline{z_3} & 1 \end{vmatrix}

12. Equation of line through z1z_1 and z2z_2 points:

zz1z1z11z2z21=0z(z1z2)+z(z2z1)+z1z2z1z2=0z(z1z2)i+z(z2z1)i+z1z2z1z2=0\begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \end{vmatrix} = 0 \Rightarrow z(\overline{z_1} - \overline{z_2}) + \overline{z}(z_2 - z_1) + z_1\overline{z_2} - \overline{z_1}z_2 = 0 \Rightarrow z(\overline{z_1} - \overline{z_2})i + \overline{z}(z_2 - z_1)i + z_1\overline{z_2} - \overline{z_1}z_2 = 0

Let (z2z1z_2 - z_1)i = a, then equation of line is: az+az+b=0\overline{a}z + a\overline{z} + b = 0 where a \in C and b \in R.

  • Complex Slope of the line joining points z1z_1 and z2z_2 is  (z2z1)(z2z1)\ \frac {(z_2 - z_1)}{(\overline{z_2-z_1})}, and slope of a line in the cartesian plane is different from the argand plane.
  • Complex slope of a line az+az+b=0\overline{a}z + a\overline{z} + b = 0 is aa,bR\frac{a}{\overline{a}}, b \in R
  • Two lines with complex slope μ1\mu_1 & μ2\mu_2 are parallel if μ1\mu_1 = μ2\mu_2 and perpendicular if μ1\mu_1 + μ2\mu_2 = 0
  • Length of perpendicular from point A(α\alpha) to line az+az+b=0\overline{a}z + a\overline{z} + b = 0 is aα+aα+b2a\frac{\overline{a}\alpha + a\overline{\alpha} + b}{2|a|}

13. Equation of Circle in the argand plane:

(a)\bold{(a)} Circle whose centre is z0z_0 radius = r = |zz0z - z_0|
(b)\bold{(b)} General equation of circle is zz+az+b=0z\overline{z} + a\overline{z} + b = 0 where center is -a and radius = a2b\sqrt{|a|^2 - b}
(c)\bold{(c)} Diameter form (zz1)(zz2)+(zz2)(zz1)=0(z - z_1)(\overline{z} - \overline{z_2}) + (z - z_2)(\overline{z} - \overline{z_1}) = 0 or arg(zz1zz2)=±π2arg(\frac{z-z_1}{z-z_2}) = \plusmn \frac{\pi}{2}
(d)\bold{(d)} Equation zz1zz2=k|\frac{z - z_1}{z - z_2}| = k represent a circle if k \ne 1 and a straight line if k = 1.
(e)\bold{(e)} Equation zz12+zz22=k|z-z_1|^2 + |z-z_2|^2 = k represent circle if k 12z1z22\ge \frac{1}{2}|z_1 - z_2|^2
(f)\bold{(f)} arg(zz1zz2)=α(\frac{z - z_1}{z - z_2}) = \alpha where 0<α<π,απ20 < \alpha < \pi, \alpha \ne \frac{\pi}{2} represent a segment of circle passing through A(z1z_1) and B(z2z_2)

14. Standard Loci in the argand plane:

(a)\bold{(a)} zz1+zz2=2k|z - z_1| + |z - z_2| = 2k (constant) represents ={An Ellipseif 2k>z1z2A line segmentif 2k=z1z2No Solutionif 2k<z1z2 = \begin{cases} An \space Ellipse &\text{if } 2k > |z_1 - z_2| \\ A \space line \space segment &\text{if } 2k = |z_1 - z_2| \\ No \space Solution &\text{if } 2k < |z_1 - z_2| \end{cases}

(b)\bold{(b)} zz1zz2=2k|z - z_1| - |z - z_2| = 2k (constant) represents ={A Hyperbolaif 2k<z1z2A line rayif 2k=z1z2No Solutionif 2k>z1z2 = \begin{cases} A \space Hyperbola &\text{if } 2k < |z_1 - z_2| \\ A \space line \space ray &\text{if } 2k = |z_1 - z_2| \\ No \space Solution &\text{if } 2k > |z_1 - z_2| \end{cases}

Related Pages:\color{red} \bold{Related \space Pages:}
Operation on Complex Numbers
Operation on Matrices
Matrices Formula Sheet

image
image
image
image
image
image
image
image
image
image