image
image
image
image
image
image
image
image
image
image

Definite-integration Formula Sheet

This page will help you to revise formulas and concepts of Definite-integration instantly for various exams.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Definite integrals compute the net area under a curve between two specified points, providing a numerical value representing the total accumulation of the function over that interval.
A definite integral is denoted by abf(x)dx\int_a^b f(x) dx which represents the algebraic area bounded by the curve y = f(x), the ordinates x = a, x = b and the x-axis.

Neetesh Kumar | June 02, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. The Fundamental Theorem of Calculus:

(a) If ff is continuous on [a,b][a, b], then the function gg defined by:
g(x)=axf(t)dt,axbg(x) = \int_{a}^{x} f(t) \, dt, \quad a \leq x \leq b
is continuous on [a,b][a, b] and differentiable on (a,b)(a, b), and g(x)=f(x)g'(x) = f(x).

(b) If ff is continuous on [a,b][a, b], then: br/> abf(x)dx=F(b)F(a)\int_{a}^{b} f(x) \, dx = F(b) - F(a) br/> where FF is any antiderivative of ff, that is, a function such that F=fF' = f.

Note:
If abf(x)dx=0\int_{a}^{b} f(x) \, dx = 0 then the equation f(x)=0f(x) = 0 has at least one root lying in (a,b)(a, b) provided ff is a continuous function in (a,b)(a, b).

2. Properties of Definite Integral:

(a)\bold{(a)} abf(x)dx=abf(t)dtabf(x)dx\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(t) \, dt \Rightarrow \int_a^bf(x)dx the integral does not depend upon the variable of integration. It is a numerical quantity.

(b)\bold{(b)} abf(x)dx=baf(x)dx\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx

(c)\bold{(c)} abf(x)dx=acf(x)dx+cbf(x)dx\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx
where cc may lie inside or outside the interval [a,b][a, b]. This property is used when ff is piecewise continuous in (a,b)(a, b).

(d)\bold{(d)} aaf(x)dx=0a[f(x)+f(x)]dx={0;if f(x) is an odd function20af(x)dx;if f(x) is an even function\int_{-a}^{a} f(x)dx = \int_0^a[f(x) + f(-x)]dx = \begin{cases} 0 &\text{;if } f(x) \space is \space an \space odd \space function \\ 2\int_0^a f(x)dx &\text{;if } f(x) \space is \space an \space even \space function \end{cases}

(e)\bold{(e)} abf(x)dx=abf(a+bx)dx\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx In particular, 0af(x)dx=0af(ax)dx\int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx

(f)\bold{(f)} 02af(x)dx=0af(x)dx+0af(2ax)dx={2abf(x)dx;if f(2ax)=f(x)0;if f(2ax)=f(x)\int_{0}^{2a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{a} f(2a - x) \, dx = \begin{cases} 2\int_a^b f(x)dx &\text{;if } f(2a-x) = f(x) \\ 0 &\text{;if } f(2a-x) = -f(x) \end{cases}

(g)\bold{(g)} 0nTf(x)dx=n0Tf(x)dx,(nI);\int_{0}^{nT} f(x) \, dx = n\int_{0}^{T} f(x)dx, (n \in I); where ‘T’ is the period of the function i.e. f(T + x) = f(x)

Note: xT+xf(t)dt\int_{x}^{T + x} f(t) \, dt will be independent of xx and equal to 0Tf(t)dt\int_{0}^{T} f(t) dt

(h)\bold{(h)} a+ntb+nTf(x)dx=nabf(x)dx\int_{a+nt}^{b+nT} f(x)dx = n \int_{a}^{b} f(x)dx where ff is periodic with period TT and nIn \in \mathbb{I}.

(i)\bold{(i)} manaf(x)dx=(nm)0af(x)dx,(n,mI)\int_{ma}^{na} f(x) \, dx = (n - m) \int_{0}^{a} f(x)dx , (n,m \in I) if f(x)f(x) is periodic with period 'a'.

3. Walli's Formula:

(a)\bold{(a)} 0π/2sinnxdx=0π/2cosnxdx=(n1)(n3)(1 or 2)n(n2)(1 or 2)k\int_{0}^{\pi/2} \sin^n x \, dx = \int_{0}^{\pi/2} \cos^n x \, dx = \frac{(n-1)(n-3)\ldots(1 \text{ or } 2)}{n(n-2)\ldots(1 \text{ or } 2)}k
Where k = ={π2if niseven1if nisodd= \begin{cases} \frac{\pi}{2} &\text{if } n \, is \, even \\ 1 &\text{if } n \, is \, odd \end{cases}

(b)\bold{(b)} 0π/2sinnxcosmxdx=[(m1)(m3)(1 or 2)][(n1)(n3)(1 or 2)](m+n)(m+n2)(1 or 2)\int_{0}^{\pi/2} \sin^n x \cos^m x \, dx = \frac{[(m-1)(m-3)\ldots(1 \text{ or } 2)][(n-1)(n-3)\ldots(1 \text{ or } 2)]}{(m+n)(m+n-2)\ldots(1 \text{ or } 2)}
Where k = ={π2if m,nareeven(m,nN)1if otherwise= \begin{cases} \frac{\pi}{2} &\text{if } m, n \, are \, even (m,n \in N) \\ 1 &\text{if } otherwise \end{cases}

4. Derivative of Antiderivative Function (Newton-Leibnitz Formula):

If h(x)h(x) and g(x)g(x) are differentiable functions of xx then,

ddx(g(x)h(x)f(t)dt)=f[h(x)]h(x)f[g(x)]g(x)\frac{d}{dx} \left( \int_{g(x)}^{h(x)} f(t) \, dt \right) = f[h(x)] \cdot h'(x) - f[g(x)] \cdot g'(x)

5. Definite Integral as Limit of a Sum:

abf(x)dx=limnh[f(a)+f(a+h)+f(a+2h)++f(a+(n1)h)]=limnhr=1n1f(a+rh)\int_{a}^{b} f(x) \, dx = \lim\limits_{n \to \infty} h \left[ f(a) + f(a + h) + f(a + 2h) + \ldots + f(a + \overline{(n-1)}h) \right] = \lim\limits_{n \to \infty} h \displaystyle\sum_{r=1}^{n-1} f(a+rh)

where, (ba)=nh(b - a) = nh.

If a=0a = 0 and b=1b = 1 then, limnhr=0n1f(rh)=01f(x)dx\lim\limits_{n \to \infty} h \displaystyle\sum_{r=0}^{n-1} f(rh) = \int_{0}^{1} f(x) \, dx
where nh = 1

OR
limn(1n)r=1n1f(rn)=01f(x)dx\lim\limits_{n \to \infty} (\frac{1}{n}) \displaystyle\sum_{r=1}^{n-1} f(\frac{r}{n}) = \int_{0}^{1} f(x) \, dx

6. Estimation of Definite Integral:

(a)\bold{(a)} If f(x)f(x) is continuous in [a,b][a, b] and its range in this interval is [m,M][m, M], then
m(ba)abf(x)dxM(ba)m(b - a) \leq \int_{a}^{b} f(x) \, dx \leq M(b - a)

(b)\bold{(b)} If f(x)g(x)f(x) \leq g(x) for axba \leq x \leq b then
abf(x)dxabg(x)dx\int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} g(x) \, dx

(c)\bold{(c)} abf(x)dxabf(x)dx\int_{a}^{b} |f(x)| \, dx \geq \left| \int_{a}^{b} f(x) \, dx \right|

(d)\bold{(d)} If f(x)0f(x) \geq 0 on the interval [a,b][a,b], then abf(x)dx0\int_{a}^{b} f(x) \, dx \geq 0

(e)\bold{(e)} If f(x)f(x) and g(x)g(x) are two continuous functions on [a,b][a, b] then
abf(x)g(x)dx(abf2(x)dx)(abg2(x)dx)|\int_{a}^{b} f(x)g(x) \, dx| \leq \sqrt{\left( \int_{a}^{b} f^2(x) \, dx \right) \left( \int_{a}^{b} g^2(x) \, dx \right)}

7. Some Standard Results:

(a)\bold{(a)} 0π/2log(sinx)dx=0π/2log(cosx)dx=π2log2\int_{0}^{\pi/2} \log(\sin x) \, dx = \int_{0}^{\pi/2} \log(\cos x) \, dx = -\frac{\pi}{2} \log 2

(b)\bold{(b)} ab{x}dx=ba2,a,bI\int_{a}^{b} \{x\} \, dx = \frac{b - a}{2}, \quad a, b \in \mathbb{I}

(c)\bold{(c)} ab1xdx=logba\int_{a}^{b} \frac{1}{x} \, dx = \log \left| \frac{b}{a} \right|

(d)\bold{(d)} abxxdx=ba\int_{a}^{b} \frac{|x|}{x} \, dx = |b| - |a|

Related Pages:\color{red} \bold{Related \space Pages:}
Monotonicity Formula Sheet
Tangent and Normal Formula Sheet
Vector operation Calculators
Vector Formula sheet