image
image
image
image
image
image
image
image
image
image

Determinants Formula Sheet

This page will help you to revise formulas and concepts of Determinants instantly for various exams.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

A determinant is a scalar value that is computed from the elements of a square matrix and provides important properties about the matrix, such as whether it is invertible and information about the linear independence of its rows or columns.

Neetesh Kumar | April 28, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. What is a Minor?:

The minor of a given element of a determinant is the determinant of the elements that remain after deleting the row & the column in which the given element stands.

For example, the minor of a1a_1 in a1b1c1a2b2c2a3b3c3\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} is b2c2b3c3\begin{vmatrix} b_2 & c_2\\ b_3 & c_3\\ \end{vmatrix} & the minor of b2b_2 is a1c1a3c3\begin{vmatrix} a_1 & c_1\\ a_3 & c_3\\ \end{vmatrix}.
Hence, a determinant of order three will have "9 minors".

2. What is a Cofactor?:

If MijM_{ij} represents the minor of the element belonging to ithi^{th} row and jthj^{th} column, then the cofactor of that element is calculated as:
Cij=(1)i+j.Mij\bold{C_{ij} = (–1)^{i + j}. M_{ij}}

Important Note:

Consider Δ\Delta = a1b1c1a2b2c2a3b3c3\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}
Let A1A_1 be cofactor of a1a_1 and B2B_2 be cofactor of b2b_2 and so on, then
(i) a1A1+b1B1+c1C1=a1A1+a2A2+a3A3=............=Δa_1A_1 + b_1B_1 + c_1C_1 = a_1A_1 + a_2A_2 + a_3A_3 = ............ = \Delta
(ii) a2A1+b2B1+c2C1=b1A1+b2A2+b3A3=.............=0a_2A_1 + b_2B_1 + c_2C_1 = b_1A_1 + b_2A_2 + b_3A_3 = ............. = 0

3. Properties of Determinants :

(a)\bold{(a)} The value of a determinant remains unaltered if the rows & corresponding columns are interchanged.

(b)\bold{(b)} If any two rows (or columns) of a determinant are interchanged, the value of the determinant is changed only in the sign. For example
Let D = a1b1c1a2b2c2a3b3c3\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} & D' = a2b2c2a1b1c1a3b3c3\begin{vmatrix} a_2 & b_2 & c_2\\ a_1 & b_1 & c_1\\ a_3 & b_3 & c_3 \end{vmatrix} Then D' = D

(c)\bold{(c)} If a determinant has two rows (or columns) identical or in the same proportion, its value is zero.

(d)\bold{(d)} If all the elements of any row (or column) are multiplied by the same number, then the determinant is multiplied by that number.

(e)\bold{(e)} a1+xb1+yc1+za2b2c2a3b3c3\begin{vmatrix} a_1 + x & b_1 + y & c_1 + z\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} = a1b1c1a2b2c2a3b3c3\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} + xyza2b2c2a3b3c3\begin{vmatrix} x & y & z\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}

(f)\bold{(f)} The value of a determinant is not altered by adding to the elements of any row (or column ) the same multiples of the corresponding elements of any other row (or column) For example
Let D = a1b1c1a2b2c2a3b3c3\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix} and D' = a1+ma2b1+mb2c1+mc2a2b2c2a3+na1b3+nb1c3+nc1\begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2\\ a_2 & b_2 & c_2\\ a_3 + na_1 & b_3 + nb_1 & c_3 + nc_1 \end{vmatrix}.
Then D' = D.

Note:

While applying this property Atleast one ROW or COLUMN\bold{Atleast \space one \space ROW \space or \space COLUMN} must remain unchanged.

(g)\bold{(g)} If the elements of a determinant Δ\Delta are rational function of x and two rows (or columns) become identical when x = a, then (x - a) is a factor of Δ\Delta.
Again, if r rows become identical when a is substituted for x, then (x – a)r – 1(x \space – \space a)^{r \space – \space 1} is a factor of Δ\Delta.

(h)\bold{(h)} If D(x) = f1f1f1g2g2g2h3h3h3\begin{vmatrix} f_1 & f_1 & f_1\\ g_2 & g_2 & g_2\\ h_3 & h_3 & h_3 \end{vmatrix}, where frf_r, grg_r, hr;h_r; r = 1, 2, 3 are three differentiable functions. then
ddx\frac{d}{dx}D(x) = f1f1f1g2g2g2h3h3h3\begin{vmatrix} f'_1 & f'_1 & f'_1\\ g_2 & g_2 & g_2\\ h_3 & h_3 & h_3 \end{vmatrix} + f1f1f1g2g2g2h3h3h3\begin{vmatrix} f_1 & f_1 & f_1\\ g'_2 & g'_2 & g'_2\\ h_3 & h_3 & h_3 \end{vmatrix} + f1f1f1g2g2g2h3h3h3\begin{vmatrix} f_1 & f_1 & f_1\\ g_2 & g_2 & g_2\\ h'_3 & h'_3 & h'_3 \end{vmatrix}

4. Multiplication of two Determinants:

a1b1a2b2\begin{vmatrix} a_1 & b_1\\ a_2 & b_2\\ \end{vmatrix} X l1m1l2m2\begin{vmatrix} l_1 & m_1\\ l_2 & m_2\\ \end{vmatrix} = a1l1+b1l2a1m1+b1m2a2l1+b2l2a2m1+b2m2\begin{vmatrix} a_1l_1 + b_1l_2 & a_1m_1 + b_1m_2\\ a_2l_1 + b_2l_2 & a_2m_1 + b_2m_2\\ \end{vmatrix}

Similarly, two determinants of order three can be multiplied.
(a)\bold{(a)} Here we have multiplied row by column. We can also multiply row by row, column by row, and column by column.

(b)\bold{(b)} If D' is the determinant formed by replacing the elements of determinant D of order n by their corresponding cofactors, then D' = Dn1^{n–1}

5. Special Determinants:

(a) Symmetric Determinant:

Elements of a determinant are such that aija_{ij} = ajia_{ji}. For example ahghbfgfc\begin{vmatrix} a & h & g\\ h & b & f\\ g & f & c \end{vmatrix} = abc + 2fgh - af2^2 - bg2^2 - ch2^2

(b) Skew Symmetric Determinant:

If aija_{ij} = aji-a_{ji}, then the determinant is said to be a skew-symmetric determinant. Here, all the principal diagonal elements are zero.
The value of a skew-symmetric determinant of odd order is zero, and of even order is a perfect square. For example 0bcb0aca0=0\begin{vmatrix} 0 & b & -c\\ -b & 0 & a\\ c & -a & 0 \end{vmatrix} = 0

(c) Other Important Determinants:

(i) 111abcbcacab\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ bc & ac & ab \end{vmatrix} = 111abca2b2c2\begin{vmatrix} 1 & 1 & 1\\ a & b & c\\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)

(ii) abcbcacab\begin{vmatrix} a & b & c\\ b & c & a\\ c & a & b \end{vmatrix} = -(a3^3 + b3^3 + c3^3 - 3abc)

6. Solving system of Linear equations :

(a) Nature of Solution for a System of equation involving two variables:

a1x+b1y+c1=0a2x+b2y+c2=0}\begin{rcases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{rcases}⇒…

Case:1\bold{Case:1}
Consistent\bold{Consistent} (System of the equation has a Solution)
(a) Unique Solution:\bold{Unique \space Solution:} If a1a2b1b2\bold{\frac{a_1}{a_2} \ne \frac{b_1}{b_2}} or a1b2a2b10\bold{a_1b_2 - a_2b_1 \ne 0} (Equations representing Intersecting Lines)\bold{Intersecting \space Lines)}
(b) Infinite Solution:\bold{Infinite \space Solution:} If a1a2=b1b2=c1c2\bold{\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}} (Equations representing Coincident Lines)\bold{Coincident \space Lines)}

Case:2\bold{Case:2}
Inconsistent\bold{Inconsistent} (System of the equation has no Solution)
If a1a2=b1b2c1c2\bold{\frac{a_1}{a_2} = \frac{b_1}{b_2} \ne \frac{c_1}{c_2}} (Equations representing Parallel disjoint Lines)\bold{Parallel \space disjoint \space Lines)}

If Δ1\Delta_1 = b1c1b2c2\begin{vmatrix} b_1 & c_1\\ b_2 & c_2\\ \end{vmatrix}, Δ2\Delta_2 = c1a1a2b2\begin{vmatrix} c_1 & a_1\\ a_2 & b_2\\ \end{vmatrix}, then x = Δ1Δ\frac{\Delta_1}{\Delta}, y = Δ2Δ\frac{\Delta_2}{\Delta}

(b) Nature of Solution for a System of equations involving three variables :

a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3}\begin{rcases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{rcases}⇒…
To solve this system, we first define the following determinants.
Δ\Delta = a1b1c1a2b2c2a3b3c3,\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}, Δ1\Delta_1 = d1b1c1d2b2c2d3b3c3,\begin{vmatrix} d_1 & b_1 & c_1\\ d_2 & b_2 & c_2\\ d_3 & b_3 & c_3 \end{vmatrix}, Δ2\Delta_2 = a1d1c1a2d2c2a3d3c3,\begin{vmatrix} a_1 & d_1 & c_1\\ a_2 & d_2 & c_2\\ a_3 & d_3 & c_3 \end{vmatrix}, Δ3\Delta_3 = a1b1d1a2b2d2a3b3d3,\begin{vmatrix} a_1 & b_1 & d_1\\ a_2 & b_2 & d_2\\ a_3 & b_3 & d_3 \end{vmatrix},

Now, the following algorithm is used to solve the system. We need to check the value of Δ\Delta
Case:1\bold{Case:1}
If Δ0:\bold{\Delta \ne 0:} System is Consistent\bold{Consistent} and has Unique Solution\bold{Unique \space Solution} then, x = Δ1Δ\frac{\Delta_1}{\Delta}, y = Δ2Δ,z=Δ3Δ\frac{\Delta_2}{\Delta}, z = \frac{\Delta_3}{\Delta}

Case:2\bold{Case:2}
If Δ=0:\bold{\Delta = 0:}We need to check the values of Δ1,\Delta_1, Δ2\Delta_2 and Δ3\Delta_3
(a) If Atleast one of Δ1,\Delta_1, Δ2\Delta_2 and Δ3\Delta_3 is not\bold{not} Zero     \implies System is Inconsistent\bold{Inconsistent}.
(b) If Δ1=\Delta_1 = Δ2=\Delta_2 = Δ3=0\Delta_3 = 0     \implies Put z=t\bold{z = t} and solve any two equations to get the values of x & y in terms of t
    \space \space \space \space If these values of x, y and z in terms of t satisfy third equation     \implies System is Consistent\bold{Consistent} and has Infinite number of Solutions\bold{Infinite \space number \space of \space Solutions}.
    \space \space \space \space If The values of x, y, z doesn't satisfy third equation     \implies System is Inconsistent\bold{Inconsistent}.

Note:

(i) Trivial Solution:\bold{Trivial \space Solution:} In the solution set of equations, if all the variables assume zero, then such a solution set is called a Trivial solution; otherwise, the solution is called a non-trivial solution.
(ii) If d1_1 = d2_2 = d3_3 = 0, then the system of linear equations is known as the system of Homogeneous linear equations, which always possesses at least one solution (0, 0, 0).
(iii) If the system of homogeneous linear equation possesses a non-zero/nontrivial solution, then Δ\Delta = 0. In such cases, a given system has infinite solutions.

Related Pages:\color{red} \bold{Related \space Pages:}
Operation on Matrices
Matrices Formula Sheet