image
image
image
image
image
image
image
image
image
image

Limit Formula Sheet

This page will help you to revise formulas and concepts of Limit instantly for various exams.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

A limit describes the value that a function approaches as the input approaches a specified point, and it is fundamental in defining both derivatives and integrals.

Neetesh Kumar | May 31, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Definition:

Let f(x) be defined on an open interval about ‘a’ except possibly at ‘a’ itself. If f(x) gets arbitrarily close to L (a finite number) for all x sufficiently close to ‘a’, we say that f(x) approaches the limit L as x approaches ‘a’ and we write limxaf(x)=L\lim\limits_{x \to a} f(x) = L and say “the limit of f(x), as x approaches a, equals L”.

2. Left & Right Hand Limit of a Function:

Left hand limit (LHL) = limxaf(x)=limh0+f(ah),h>0\lim\limits_{x \to a^-} f(x) = \lim\limits_{h \to 0^+} f(a - h), h>0
Right hand limit (RHL) = limxa+f(x)=limh0+f(a+h),h>0\lim\limits_{x \to a^+} f(x) = \lim\limits_{h \to 0^+} f(a + h), h>0
Limit of a function f(x) is said to exist as xax \to a when limxaf(x)=limxa+f(x)=L\lim\limits_{x \to a^-} f(x) = \lim\limits_{x \to a^+} f(x) = L (finite and fixed quantity).

Important note:
In limxaf(x)\lim\limits_{x \to a} f(x), xax \to a necessarily implies xax \ne a.
That is, while evaluating the limit at x=ax = a, we are not concerned with the value of the function at x=ax = a. In fact, the function may or may not be defined at x=ax = a.
Also, it is necessary to note that if f(x) is defined only on one side of ‘x = a’, one-sided limits are good enough to establish the existence of limits, & if f(x) is defined on either side of ‘a’ both sided limits are to be considered.

3. Fundamental Theorems on Limits:

Let limxaf(x)=l\lim\limits_{x \to a} f(x) = l and limxag(x)=m\lim\limits_{x \to a} g(x) = m. If ll and mm exist finitely, then:

  • Sum rule: limxa[f(x)+g(x)]=l+m\lim\limits_{x \to a} [f(x) + g(x)] = l + m
  • Difference rule: limxa[f(x)g(x)]=lm\lim\limits_{x \to a} [f(x) - g(x)] = l - m
  • Product rule: limxa[f(x)g(x)]=lm\lim\limits_{x \to a} [f(x)g(x)] = lm
  • Quotient rule: limxaf(x)g(x)=lm\lim\limits_{x \to a} \frac{f(x)}{g(x)} = \frac{l}{m}, provided m0m \ne 0
  • Constant multiple rule: limxa[kf(x)]=klimxaf(x)=kl\lim\limits_{x \to a} [kf(x)] = k \cdot \lim\limits_{x \to a} f(x) = kl
  • Power rule: limxa[f(x)]g(x)=lm\lim\limits_{x \to a} [f(x)]^{g(x)} = l^m, provided l>0l > 0
  • limxaf(g(x))=f(limxag(x))=f(m)\lim\limits_{x \to a} f(g(x)) = f(\lim\limits_{x \to a} g(x)) = f(m), provided f(x)f(x) is continuous at x=mx = m.
  • For Example: limxalnf(x)=ln[limxaf(x)];\lim\limits_{x \to a} lnf(x) = ln[\lim\limits_{x \to a} f(x)]; provided lnx is defined at x = limtaf(t)\lim\limits_{t \to a} f(t)

4. Indeterminate Forms:

00,,,0,1,00,0\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \cdot \infty, 1^\infty, 0^0, \infty^0

Note: Infinity (\infty) is a symbol, not a number, and does not obey the laws of elementary algebra.

5. General Methods to be Used to Evaluate Limits:

(a) Factorization: Important factors:

  • xnan=(xa)(xn1+axn2++an1)x^n - a^n = (x - a)(x^{n-1} + ax^{n-2} + \ldots + a^{n-1}), nNn \in \mathbb{N}
  • xn+an=(x+a)(xn1axn2++an1)x^n + a^n = (x + a)(x^{n-1} - ax^{n-2} + \ldots + a^{n-1}), nn is an odd natural number.
  • limxaxnanxa=nan1\lim\limits_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}

(b) Rationalization or double rationalization: Rationalize the factor containing the square root and simplify.

(c) Limit when xx \to \infty:

  • Divide by the greatest power of xx in the numerator and denominator.
  • Put x=1yx = \frac{1}{y} and apply y0y \to 0

(d) Squeeze play theorem (Sandwich theorem): If f(x)g(x)h(x);f(x) \le g(x) \le h(x); \forall x and limxaf(x)=limxah(x)=L\lim\limits_{x \to a} f(x) = \lim\limits_{x \to a} h(x) = L, then limxag(x)=L\lim\limits_{x \to a} g(x) = L.

(e) Using substitution limxaf(x)=limhaf(ah)\lim\limits_{x \to a} f(x) = \lim\limits_{h \to a} f(a-h) i.e. by substituting x by a - h or a + h.

6. Limit of Trigonometric Functions:

limx0sinxx=1\lim\limits_{x \to 0} \frac{\sin x}{x} = 1, limx0tanxx=1\lim\limits_{x \to 0} \frac{\tan x}{x} = 1, limx0sinxtanx=1\lim\limits_{x \to 0} \frac{\sin x}{\tan x} = 1, limx0tanxsinx=1\lim\limits_{x \to 0} \frac{\tan x}{\sin x} = 1.

If limxaf(x)=0\lim\limits_{x \to a} f(x) = 0, then limxasinf(x)f(x)=1\lim\limits_{x \to a} \frac{\sin f(x)}{f(x)} = 1.

7. Limit of Exponential Functions:

(a) limx0(1+x)1x=e=limx(1+1x)x\lim\limits_{x \to 0} (1 + x)^{\frac{1}{x}} = e = \lim\limits_{x \to \infty} (1 + \frac{1}{x})^x
In general, if limxaf(x)=0\lim\limits_{x \to a} f(x) = 0, then limxa(1+f(x))1f(x)=e\lim\limits_{x \to a} (1 + f(x))^{\frac{1}{f(x)}} = e

(b) If limxaf(x)=A>0\lim\limits_{x \to a} f(x) = A > 0 and limxaϕ(x)=B\lim\limits_{x \to a} \phi(x) = B (finite quantity), then limxa[f(x)]ϕ(x)=eBlnA=AB\lim\limits_{x \to a} [f(x)]^{\phi(x)} = e^{BlnA} = A^B

(c) limx0ax1x=lna\lim\limits_{x \to 0} \frac{a^x - 1}{x} = lna (a > 0) In particular limx0ex1x=1\lim\limits_{x \to 0} \frac{e^x - 1}{x} = 1
In general If limx0f(x)=0,\lim\limits_{x \to 0} f(x) = 0, then limxaaf(x)1f(x)=lna,\lim\limits_{x \to a} \frac{a^{f(x)} - 1}{f(x)} = lna, a > 0

(d) limx0ln(1+x)x=1\lim\limits_{x \to 0} \frac{ln(1+x)}{x} = 1

(e) limxaf(x)=1\lim\limits_{x \to a} f(x) = 1 and limxaϕ(x)=\lim\limits_{x \to a} \phi(x) = \infty then limxa[f(x)]ϕ(x)=ek\lim\limits_{x \to a} [f(x)]^{\phi(x)} = e^k where k = limxaϕ(x)[f(x)1]\lim\limits_{x \to a} \phi(x)[f(x)-1]

8. Limit Using Series Expansion:

Remember these series expansions:
(a) ex=1+x+x22!+x33!+,xRe^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots, x \in R

(b) ax=1+xlna1!+x2ln2a2!+x3ln3a3!+...,a>0a^x = 1 + \frac{xlna}{1!} + \frac{x^2ln^2a}{2!} + \frac{x^3ln^3a}{3!} + ..., a>0

(c) sinx=xx33!+x55!\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots

(d) cosx=1x22!+x44!\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots

(e) tanx=x+x33+2x515+,x<π2tanx = x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots, |x| < \frac{\pi}{2}

(f) tan1x=xx33+x55x77,xRtan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} \ldots, x\in R

(g) sin1x=x+12x33!+12.32x55!+12.32.52x77!,x1sin^{-1}x = x + \frac{1^2x^3}{3!} + \frac{1^2.3^2x^5}{5!} + \frac{1^2.3^2.5^2x^7}{7!} \ldots, |x| \le 1

(h) ln(1+x)=xx22+x33\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots for 1<x-1 < x \le 1

(i) (1+x)n=1+nx+n(n1)x22!+,nR,x<1(1 + x)^n = 1 + nx + \frac{n(n-1)x^2}{2!} + \ldots, n \in R, |x| < 1

Related Pages:\color{red} \bold{Related \space Pages:}
Function Relation Formula Sheet
Vector operation Calculators
Vector Formula sheet