image
image
image
image
image
image
image
image
image
image

Methods-of-differentiation Formula Sheet

This page will help you to revise formulas and concepts of Methods-of-differentiation instantly for various exams.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Differentiation is the process in calculus of finding the derivative of a function, which describes the rate at which the function changes concerning its independent variable.

Neetesh Kumar | May 29, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Derivative by First Principle:

Obtaining the derivative using the definition
limδx0δyδx=limδx0f(x+δx)f(x)δx=f(x)=dydx\lim\limits_{\delta x\to0} \frac{\delta y}{\delta x} = \lim\limits_{\delta x\to0} \frac{f(x+\delta x ) - f(x)}{\delta x} = f'(x) = \frac{dy}{dx}
is called calculating the derivative using the first principle or 'ab initio' or delta method.

2. Fundamental Rules of Differentiation:

If f and g are derivable functions of x, then
(a)\bold{(a)} ddx(f±g)=dfdx±dydx\frac{d}{dx}(f \plusmn g) = \frac{df}{dx} \plusmn \frac{dy}{dx} is known as Sum Rule\bold{Sum \space Rule}

(b)\bold{(b)} ddx(cf)=cdfdx,\frac{d}{dx}(cf) = c\frac{df}{dx}, where c is any constant

(c)\bold{(c)} ddx(fg)=fdgdx+gdfdx\frac{d}{dx} (fg) = f \frac{dg}{dx} + g \frac{df}{dx}, known as Product Rule\bold{Product \space Rule}

(d)\bold{(d)} ddx(fg)=gdfdxfdgdxg2\frac{d}{dx} \left( \frac{f}{g} \right) = \frac{g \frac{df}{dx} - f \frac{dg}{dx}}{g^2}, where g0g \neq 0, known as Quotient Rule\bold{Quotient \space Rule}

(e)\bold{(e)} If y=f(u)y = f(u) and u=g(x)u = g(x), then dydx=dydu.dudx\frac{dy}{dx} = \frac{dy}{du}.\frac{du}{dx} , known as Chain Rule\bold{Chain \space Rule}

Note: In general, if y=f(u)y = f(u), then dydx=f(u)dudx\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}.

3. Derivative of Standard Functions:

f(x)f(x)f(x)f'(x)
xnx^nnxn1nx^{n-1}
exe^xexe^x
axa^xaxlna,a>0a^x \ln a, a > 0
lnx\ln x1x\frac{1}{x}
logax\log_a x1xlna,a>0,a1\frac{1}{x \ln a}, a > 0, a \neq 1
sinx\sin xcosx\cos x
cosx\cos xsinx-\sin x
tanx\tan xsec2x\sec^2 x
secx\sec xsecxtanx\sec x \tan x
cscx\csc xcscxcotx-\csc x \cot x
cotx\cot xcsc2x-\csc^2 x
constant0
sin1x\sin^{-1} x11x2,1<x<1\frac{1}{\sqrt{1-x^2}}, -1 < x < 1
cos1x\cos^{-1} x11x2,1<x<1-\frac{1}{\sqrt{1-x^2}}, -1 < x < 1
tan1x\tan^{-1} x11+x2,xR\frac{1}{1+x^2}, x \in \mathbb{R}

| sec1x\sec^{-1} x | 1xx21\frac{1}{|x| \sqrt{x^2-1}}, |x| > 1 |

| csc1x\csc^{-1} x | 1xx21,x>1-\frac{1}{|x| \sqrt{x^2-1}}, |x| > 1 |

| cot1x\cot^{-1} x | 11+x2,xR-\frac{1}{1+x^2}, x \in \mathbb{R} |

4. Logarithimic Differentiation:

To find the derivative of:

(a) A function which is the product or quotient of a number of functions or

(b) A function of the form [f(x)]g(x)[f(x)]^{g(x)} where ff and gg are both derivable,

it is convenient to take the logarithm of the function first and then differentiate.

5. Differentiation of Implicit Function:

(a) Let the function be ϕ(x,y)=0\phi(x, y) = 0. To find dydx\frac{dy}{dx}, in the case of implicit functions, we differentiate each term w.r.t. xx regarding yy as a function of xx and then collect terms in dydx\frac{dy}{dx} together on one side to finally find dydx\frac{dy}{dx} OR dydx=ϕ/xϕ/y\frac{dy}{dx} = -\frac{\partial \phi / \partial x}{\partial \phi / \partial y}

where ϕx\frac{\partial \phi}{\partial x} and ϕy\frac{\partial \phi}{\partial y} are partial differential coefficients of ϕ(x,y)\phi(x, y) w.r.t. xx and yy respectively.

(b) In the expression of dydx\frac{dy}{dx} in the case of implicit functions, both xx and yy are present.

6. Parametric Differentiation:

If y=f(θ)y = f(\theta) and x=g(θ)x = g(\theta) where θ\theta is a parameter, then
dydx=dydθdxdθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}.

7. Derivative of a Function w.r.t. another Function:

Let y=f(x)y = f(x) and z=g(x)z = g(x), then dydz=dydxdzdx=f(x)g(x)\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{f'(x)}{g'(x)}.

8. Derivative of Inverse Function:

If the inverse of y=f(x)y = f(x) is denoted as g(x)=f1(x)g(x) = f^{-1}(x), then g(f(x))=xg(f(x)) = x g(f(x))f(x)=1\Rightarrow g'(f(x)) f'(x) = 1.

9. Higher Order derivatives:

Let a function y=f(x)y = f(x) be defined on an open interval (a,b)(a, b). Its derivative, if it exists on (a,b)(a, b), is a certain function f(x)f'(x) [or dydx\frac{dy}{dx} or yy'] and it is called the first derivative of yy w.r.t. xx. If the first derivative has a derivative on (a,b)(a, b), then this derivative is called the second derivative of yy w.r.t. xx and is denoted by f(x)f''(x) or d2ydx2\frac{d^2y}{dx^2} or yy''. Similarly, the 3rd order derivative of yy w.r.t. xx, if it exists, is defined by d3ydx3=ddx(d2ydx2)\frac{d^3y}{dx^3} = \frac{d}{dx} \left( \frac{d^2y}{dx^2} \right). It is also denoted by f(x)f'''(x) or yy'''.

10. Differentiation of Determinants:

If F(x)=f(x)g(x)h(x)λ(x)m(x)n(x)u(x)v(x)w(x)F(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ \lambda(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} where f,g,h,λ,m,n,u,v,wf, g, h, \lambda, m, n, u, v, w are differentiable functions of xx, then

F(x)=f(x)g(x)h(x)λ(x)m(x)n(x)u(x)v(x)w(x)F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ \lambda(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + f(x)g(x)h(x)λ(x)m(x)n(x)u(x)v(x)w(x)\begin{vmatrix} f(x) & g(x) & h(x) \\ \lambda'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + f(x)g(x)h(x)λ(x)m(x)n(x)u(x)v(x)w(x)\begin{vmatrix} f(x) & g(x) & h(x) \\ \lambda(x) & m(x) & n(x) \\ u'(x) & v'(x) & w'(x) \end{vmatrix}

Similarly, one can also proceed column-wise.

11. L Hopital's Rule:

(a) Applicable while calculating limits of indeterminate forms of the type 00,\frac{0}{0}, \frac{\infty}{\infty}. If the functions f(x)f(x) and g(x)g(x) are differentiable and g(x)0g'(x) \neq 0 near aa (except possibly at aa),
then: limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} provided the limit on the right side exists.

(b) If the result is again of the form 00\frac{0}{0} or \frac{\infty}{\infty}, we can apply L'Hopital's Rule again: limxaf(x)g(x)=limxaf(x)g(x)\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f''(x)}{g''(x)} and so on, until the limit is not in indeterminate form.

(c) For indeterminate forms of the type 00 \cdot \infty, \infty - \infty, 000^0, 0\infty^0, and 11^\infty, appropriate algebraic manipulations can be made to convert them into a form where L'Hopital's Rule can be applied.

Related Pages:\color{red} \bold{Related \space Pages:}
Binomial Expansion Calculators
Vector operation Calculators
Vector Formula sheet