image
image
image
image
image
image
image
image
image
image

Quadratic-equations Formula Sheet

This page will help you to revise formulas and concepts of Quadratic-equations instantly for various exams.
image
image
image
image
image
image
image
image

A quadratic equation is a second-degree polynomial equation of the form ax2+bx+c=0ax^2+bx+c=0, where It typically has two solutions, which can be real or complex depending on the discriminant b24acb^2-4ac.

Neetesh Kumar | June 03, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Solution of Quadratic Equation & Relation Between Roots & Coefficients:

(a) The solutions of the quadratic equation, ax2+bx+c=0ax^2 + bx + c = 0 is given by x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

(b) The expression b24acΔb^2 - 4ac \equiv \Delta is called the discriminant of the quadratic equation.

(c) If α\alpha and β\beta are the roots of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0, then:

  • (i)α+β=ba(i) \alpha + \beta = -\frac{b}{a}
  • (ii)αβ=ca(ii) \alpha\beta = \frac{c}{a}
  • (iii)α=β=Da(iii) |\alpha = \beta| = \frac{\sqrt{D}}{|a|}

(d) Quadratic equation whose roots are α\alpha and β\beta is (xα)(xβ)=0(x - \alpha)(x - \beta) = 0 i.e.
x2(α+β)x+αβ=0 x^2 - (\alpha + \beta)x + \alpha\beta = 0 i.e. x2x^2 - (Sum of Roots)x + Product of Roots = 0

(e) If α\alpha, β\beta are roots of equation ax2+bx+c=0ax^2 + bx + c = 0, we have identity in xx as ax2+bx+c=a(xα)(xβ)ax^2 + bx + c = a(x - \alpha)(x - \beta)

2. Nature of Roots:

(a) Consider the quadratic equa tion ax2+bx+c=0ax^2 + bx + c = 0 where a,b,cRa, b, c \in \mathbb{R} & a0a \neq 0 then:

  • (i)Δ>0(i) \Delta > 0 \Leftrightarrow roots are real & distinct (unequal).
  • (ii)Δ=0(ii) \Delta = 0 \Leftrightarrow roots are real & coincident (equal).
  • (iii)Δ<0(iii) \Delta < 0 \Leftrightarrow roots are imaginary.
  • (iv)(iv) If p+iqp + iq is one root of a quadratic equation, then the other root must be the conjugate piqp - iq & vice versa. (p,qR(p, q \in \mathbb{R} & i=1)i = \sqrt{-1}).

(b) Consider the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 where a,b,cQa, b, c \in \mathbb{Q} & a0a \neq 0 then:

  • (i)(i) If Δ\Delta is a perfect square, then roots are rational.
  • (ii)(ii) If α=p+q\alpha = p + \sqrt{q} is one root in this case, (where pp is rational & q\sqrt{q} is a surd) then the other root will be pqp - \sqrt{q}.

3. Common Roots of Two Quadratic Equations:

(a) At least one common root. Let α\alpha be the common root of ax2+bx+c=0ax^2 + bx + c = 0 & ax2+bx+c=0a'x^2 + b'x + c' = 0 then:
aα2+bα+c=0a\alpha^2 + b\alpha + c = 0 aα2+bα+c=0a'\alpha^2 + b'\alpha + c' = 0

By Cramer’s Rule: α2bcbc=αacac=1abab\frac{\alpha^2}{bc'-b'c} = \frac{\alpha}{a'c-ac'} = \frac{1}{ab'-a'b}

Therefore, α=cacaabab=bcbcacac\alpha = \frac{ca'-c'a}{ab'-a'b} = \frac{bc'-b'c}{a'c-ac'}

So the condition for a common root is: (bcbc)2=(abab)(acac)(bc' - b'c)^2 = (ab' - a'b)(ac' - a'c)

(b) If both roots are same then: aa=bb=cc\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}

4. Roots Under Particular Cases:

Let the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 has real roots and: (a) If b=0b = 0 \Rightarrow roots are of equal magnitude but of opposite sign.

(b) If c=0c = 0 \Rightarrow one root is zero other is ba-\frac{b}{a}.

(c) If a=ca = c \Rightarrow roots are reciprocal to each other.

(d) If ac<0ac < 0 \Rightarrow roots are of opposite signs.

(e) If a>0,b>0,c>0a > 0, b > 0, c > 0 or a<0,b<0,c<0a < 0, b < 0, c < 0 \Rightarrow both roots are negative.

(f) If a>0,b<0,c>0a > 0, b < 0, c > 0 or a<0,b>0,c<0a < 0, b > 0, c < 0 \Rightarrow both roots are positive.

(g) If sign of a=a = sign of bb \neq sign of cc \Rightarrow Greater root in magnitude is negative.

(h) If sign of b=b = sign of cc \neq sign of aa \Rightarrow Greater root in magnitude is positive.

(i) If a+b+c=0a + b + c = 0 \Rightarrow one root is 1 and second root is ca\frac{c}{a}.

5. Maximum & Minimum Values of Quadratic Expression:

Maximum or Minimum Values of expression y=ax2+bx+cy = ax^2 + bx + c is Δ4a\frac{-\Delta}{4a} which occurs at x=b2ax = -\frac{b}{2a} according as a<0a < 0 or a>0a > 0.
y[D4a,)y \in [\frac{-D}{4a}, \infty) if a > 0 & y(,D4a]y \in (-\infty, \frac{-D}{4a}] if a < 0

6. Location of Roots:

Let f(x)=ax2+bx+cf(x) = ax^2 + bx + c, where a,b,cR,a0a, b, c \in \mathbb{R}, a \neq 0: (a) Conditions for both the roots of f(x)=0f(x) = 0 to be greater than a specified number ‘d’ are Δ0\Delta \geq 0 and af(d)>0a \cdot f(d) > 0 & b2a>d-\frac{b}{2a} > d.

(b) Condition for both roots of f(x)=0f(x) = 0 to lie on either side of the number ‘d’ in other words the number ‘d’ lies between the roots of f(x)=0f(x) = 0 is af(d)<0a \cdot f(d) < 0.

(c) Condition for exactly one root of f(x)=0f(x) = 0 to lie in the interval (d,e)(d,e) i.e. d<x<ed < x < e is f(d)f(e)<0f(d) \cdot f(e) < 0.

(d) Conditions that both roots of f(x)=0f(x) = 0 to be confined between the numbers dd & ee are: Δ0\Delta \geq 0 and af(d)>0a \cdot f(d) > 0 & af(e)>0a \cdot f(e) > 0 and d<b2a<ed < -\frac{b}{2a} < e.

7. General Quadratic Expression in Two Variables:

f(x,y)=ax2+2hxy+by2+2gx+2fy+cf(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c may be resolved into two linear factors if:
D=abc+2fghaf2bg2ch2=0D = abc + 2fgh - af^2 - bg^2 - ch^2 = 0 OR ahghbfgfc=0\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0

8. Theory of Equations:

If α1,α2,α3,,αn\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n are the roots of the equation: f(x)=a0xn+a1xn1+a2xn2++an1x+an=0f(x) = a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n = 0 where a0,a1,,ana_0, a_1, \ldots, a_n are constants a00a_0 \neq 0 then:

  • (i)α1=a1a0(i) \sum \alpha_1 = -\frac{a_1}{a_0}
  • (ii)(α1α2)=+a2a0(ii) \sum (\alpha_1 \alpha_2) = +\frac{a_2}{a_0}
  • (iii)(α1α2α3)=a3a0(iii) \sum (\alpha_1 \alpha_2 \alpha_3) = -\frac{a_3}{a_0}
  • (iv)(α1α2α3....αn)=(1)nana0(iv) \sum (\alpha_1 \alpha_2 \alpha_3....\alpha_n) = (-1)^n\frac{a_n}{a_0}

Related Pages:\color{red} \bold{Related \space Pages:}
Monotonicity Formula Sheet
Tangent and Normal Formula Sheet
Vector operation Calculators
Vector Formula sheet

image
image
image
image
image
image
image
image
image
image