image
image
image
image
image
image
image
image
image
image

Trignometric-equation Formula Sheet

This page will help you to revise formulas and concepts of Trignometric-equation instantly for various exams.
Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Trigonometric equations are mathematical expressions that involve trigonometric functions (like sine, cosine, and tangent) set equal to a value, and solving them typically requires finding the angles that satisfy the equation within given intervals.

Neetesh Kumar | May 19, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Definition:

It is an equation involving one or more trigonometrical ratios of unknown angles.

2. Solution of Trigonometric Equation:

A value of the unknown angle which satisfies the given equations is called a solution of the trigonometric equation.
Principal Solution:\bold{Principal \space Solution:} The solution of the trigonometric equation lying in the interval [0,2π0, 2\pi].
General Solution:\bold{General \space Solution:} Since all the trigonometric functions are many one & periodic, hence there are infinite values of θ\theta for which trigonometric functions have the same value. A general formula gives all possible values of θ\theta for which the given trigonometric function is satisfied. Such a general formula is called the general solution of a trigonometric equation.

3. General Solution of Trigonometric Equations:

(a)\bold{(a)} If Sinθ\theta = 0, then θ=nπ,nI\theta = n\pi, n \in I
(b)\bold{(b)} If cosθ\theta = 0, then θ=(2n+1)π2,nI\theta = (2n+1)\frac{\pi}{2}, n \in I
(c)\bold{(c)} If tanθ\theta = 0, then θ=nπ,nI\theta = n\pi, n \in I
(d)\bold{(d)} If Sinθ\theta = Sinα\alpha, then θ=nπ+(1)nα,nI\theta = n\pi + (-1)^n \alpha, n \in I
(e)\bold{(e)} If Cosθ\theta = Cosα\alpha, then θ=2nπ±α,nI\theta = 2n\pi \plusmn \alpha, n \in I
(f)\bold{(f)} If tanθ\theta = tanα\alpha, then θ=nπ±α,nI\theta = n\pi \plusmn \alpha, n \in I
(g)\bold{(g)} If Sinθ\theta = 1, then θ=2nπ+π2,(4n+1)π2,nI\theta = 2n\pi + \frac{\pi}{2}, (4n+1)\frac{\pi}{2}, n\in I
(h)\bold{(h)} If Cosθ\theta = 1, then θ=2nπ,nI\theta = 2n\pi, n\in I
(i)\bold{(i)} If Sin2θ^2\theta = Sin2α^2\alpha or Cos2θ^2\theta = Cos2α^2\alpha or tan2θ^2\theta = tan2α,^2\alpha, then θ=nπ±α,nI\theta = n\pi \plusmn \alpha, n\in I
(j)\bold{(j)} Sin(nπ+θ)=(1)n(n\pi + \theta) = (-1)^nSinθ,nI\theta, n \in I
(k)\bold{(k)} Cos(nπ+θ)=(1)n(n\pi + \theta) = (-1)^nCosθ,nI\theta, n \in I

Related Pages:\color{red} \bold{Related \space Pages:}
Sequence and Series Calculators
Operation on Matrices
Trigonometric Ratio Formula Sheet
Matrices Formula Sheet