Trigonometric ratios (sine, cosine, tangent, etc.) describe the relationships between the angles and sides of a right triangle, while
Trigonometric identities are equations involving these ratios that hold for all values of the included angles within their domains.
Neetesh Kumar | May 17, 2024
\space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on:
1. Relation between Degree, Grade, and Radian:
D 90 = G 100 = 2 C π \frac{D}{90} = \frac{G}{100} = \frac{2C}{\pi} 90 D = 100 G = π 2 C
1 Radian = 180 π \frac{180}{\pi} π 180 degree ≈ \approx ≈ 5 7 o 1 7 ′ 1 5 ′ ′ 57^o17'15'' 5 7 o 1 7 ′ 1 5 ′′ (approximately)
1 Degree = π 180 \frac{\pi}{180} 180 π radian ≈ \approx ≈ 0.0175 radian
2. General Trigonometric Identities:
( a ) \bold{(a)} ( a ) Sin2 θ ^2\theta 2 θ + Cos2 θ = 1 ^2\theta = 1 2 θ = 1
( b ) \bold{(b)} ( b ) Sec2 θ ^2\theta 2 θ - tan2 θ = 1 ^2\theta = 1 2 θ = 1
( c ) \bold{(c)} ( c ) Cosec2 θ ^2\theta 2 θ - Cot2 θ = 1 ^2\theta = 1 2 θ = 1
( d ) \bold{(d)} ( d ) Secθ \theta θ + tanθ = k ⇒ \theta = k \Rightarrow θ = k ⇒ Secθ \theta θ - tanθ = 1 k ⇒ 2 S e c θ = k + 1 k \theta = \frac{1}{k} \Rightarrow 2Sec\theta = k + \frac{1}{k} θ = k 1 ⇒ 2 S ec θ = k + k 1
( e ) \bold{(e)} ( e ) Cosecθ \theta θ + Cotθ = k ⇒ \theta = k \Rightarrow θ = k ⇒ Cosecθ \theta θ - Cotθ = 1 k ⇒ 2 C o s e c θ = k + 1 k \theta = \frac{1}{k} \Rightarrow 2Cosec\theta = k + \frac{1}{k} θ = k 1 ⇒ 2 C osec θ = k + k 1
3. Sign Convention in different Quadrants:
4. Trigonometric Functions of Allied angles:
( a ) \bold{(a)} ( a ) Sin(2 n π + θ 2n\pi + \theta 2 nπ + θ ) = Sin(θ \theta θ ) & Cos(2 n π + θ 2n\pi + \theta 2 nπ + θ ) = Cos(θ \theta θ ) where n ∈ \in ∈ I
( b ) \bold{(b)} ( b )
Sin(− θ -\theta − θ ) = − - − Sin(θ \theta θ )
Cos(− θ -\theta − θ ) = Cos(θ \theta θ )
Sin(90 − θ 90-\theta 90 − θ ) = Cos(θ \theta θ )
Cos(90 − θ 90-\theta 90 − θ ) = Sin(θ \theta θ )
Sin(90 + θ 90+\theta 90 + θ ) = Cos(θ \theta θ )
Cos(90 + θ 90+\theta 90 + θ ) = -Sin(θ \theta θ )
Sin(180 − θ 180-\theta 180 − θ ) = Sin(θ \theta θ )
Cos(180 − θ 180-\theta 180 − θ ) = − - − Cos(θ \theta θ )
Sin(180 + θ 180+\theta 180 + θ ) = − - − Sin(θ \theta θ )
Cos(180 + θ 180+\theta 180 + θ ) = − - − Cos(θ \theta θ )
Sin(270 − θ 270-\theta 270 − θ ) = − - − Cos(θ \theta θ )
Cos(270 − θ 270-\theta 270 − θ ) = − - − Sin(θ \theta θ )
Sin(270 + θ 270+\theta 270 + θ ) = − - − Cos(θ \theta θ )
Cos(270 + θ 270+\theta 270 + θ ) = Sin(θ \theta θ )
( c ) \bold{(c)} ( c ) Sin( n π ) = 0 ; C o s ( n π ) = ( − 1 ) n ; t a n ( n π ) = 0 (n\pi)=0; Cos(n\pi) = (-1)^n; tan(n\pi)=0 ( nπ ) = 0 ; C os ( nπ ) = ( − 1 ) n ; t an ( nπ ) = 0 where n ∈ \in ∈ I
( d ) \bold{(d)} ( d ) Sin( 2 n + 1 ) π 2 = ( − 1 ) n ; (2n+1)\frac{\pi}{2} = (-1)^n; ( 2 n + 1 ) 2 π = ( − 1 ) n ; Cos( 2 n + 1 ) π 2 = 0 (2n+1)\frac{\pi}{2} = 0 ( 2 n + 1 ) 2 π = 0 where n ∈ \in ∈ I
5. Important Trigonometric Formulae:
Sin(A + B) = SinA.CosB + CosA.SinB
Sin(A - B) = SinA.CosB - CosA.SinB
Cos(A + B) = CosA.CosB - SinA.SinB
Cos(A - B) = CosA.CosB + SinA.SinB
tan(A + B) = t a n A + t a n B 1 − t a n A . t a n B \frac{tanA + tanB}{1-tanA.tanB} 1 − t an A . t an B t an A + t an B
tan(A - B) = t a n A − t a n B 1 + t a n A . t a n B \frac{tanA - tanB}{1+tanA.tanB} 1 + t an A . t an B t an A − t an B
Cot(A+B) = C o t B . C o t A − 1 C o t B + C o t A \frac{CotB.CotA - 1}{CotB + CotA} C o tB + C o t A C o tB . C o t A − 1
Cot(A-B) = C o t B . C o t A + 1 C o t B − C o t A \frac{CotB.CotA + 1}{CotB - CotA} C o tB − C o t A C o tB . C o t A + 1
2SinA.CosB = Sin(A+B) + Sin(A-B)
2CosA.SinB = Sin(A+B) - Sin(A-B)
2CosA.CosB = Cos(A+B) + Cos(A-B)
2SinA.SinB = Cos(A-B) - Cos(A+B)
SinC + SinD = 2Sin( C + D 2 ) (\frac{C+D}{2}) ( 2 C + D ) .Cos( C − D 2 ) (\frac{C-D}{2}) ( 2 C − D )
SinC - SinD = 2Cos( C + D 2 ) (\frac{C+D}{2}) ( 2 C + D ) .Sin( C − D 2 ) (\frac{C-D}{2}) ( 2 C − D )
CosC + CosD = 2Cos( C + D 2 ) (\frac{C+D}{2}) ( 2 C + D ) .Cos( C − D 2 ) (\frac{C-D}{2}) ( 2 C − D )
CosC - CosD = − - − 2Sin( C + D 2 ) (\frac{C+D}{2}) ( 2 C + D ) .Sin( C − D 2 ) (\frac{C-D}{2}) ( 2 C − D )
Sin2 θ = 2\theta = 2 θ = 2Sinθ \theta θ .Cosθ = 2 t a n θ 1 + t a n 2 θ \theta = \frac{2tan\theta}{1+tan^2\theta} θ = 1 + t a n 2 θ 2 t an θ
Cos2 θ = 2\theta= 2 θ = Cos2 θ − ^2\theta - 2 θ − Sin2 θ ^2\theta 2 θ = 2Cos2 θ − 1 = 1 − 2 ^2\theta - 1 = 1 - 2 2 θ − 1 = 1 − 2 Sin2 θ = 1 − t a n 2 θ 1 + t a n 2 θ ^2\theta = \frac{1-tan^2\theta}{1+tan^2\theta} 2 θ = 1 + t a n 2 θ 1 − t a n 2 θ
1 - Cos2 θ 2\theta 2 θ = 2Sin2 θ ^2\theta 2 θ or |Sinθ \theta θ | = 1 − C o s 2 θ 2 \frac{1-Cos2\theta}{2} 2 1 − C os 2 θ
tanθ = 1 − C o s 2 θ S i n 2 θ = S i n 2 θ 1 + C o s 2 θ \theta = \frac{1-Cos2\theta}{Sin2\theta} = \frac{Sin2\theta}{1+Cos2\theta} θ = S in 2 θ 1 − C os 2 θ = 1 + C os 2 θ S in 2 θ
tan2 θ = 2 t a n θ 1 − t a n 2 θ 2\theta = \frac{2tan\theta}{1-tan^2\theta} 2 θ = 1 − t a n 2 θ 2 t an θ
Sin3 θ 3\theta 3 θ = 3Sinθ \theta θ - 4Sin3 θ ^3\theta 3 θ
Cos3 θ 3\theta 3 θ = 4Cos3 θ ^3\theta 3 θ - 3Cosθ \theta θ
Sinθ \theta θ .Sin( 60 − θ ) (60-\theta) ( 60 − θ ) .Sin( 60 + θ ) = 1 4 S i n ( 3 θ ) (60+\theta) = \frac{1}{4}Sin(3\theta) ( 60 + θ ) = 4 1 S in ( 3 θ )
Cosθ \theta θ .Cos( 60 − θ ) (60-\theta) ( 60 − θ ) .Cos( 60 + θ ) = 1 4 C o s ( 3 θ ) (60+\theta) = \frac{1}{4}Cos(3\theta) ( 60 + θ ) = 4 1 C os ( 3 θ )
tanθ \theta θ .tan( 60 − θ ) (60-\theta) ( 60 − θ ) .tan( 60 + θ ) = t a n ( 3 θ ) (60+\theta) = tan(3\theta) ( 60 + θ ) = t an ( 3 θ )
cotθ \theta θ .cot( 60 − θ ) (60-\theta) ( 60 − θ ) .cot( 60 + θ ) = c o t ( 3 θ ) (60+\theta) = cot(3\theta) ( 60 + θ ) = co t ( 3 θ )
Sin2 θ ^2\theta 2 θ + Sin2 ( 60 − θ ) ^2(60-\theta) 2 ( 60 − θ ) + Sin2 ( 60 + θ ) = 3 2 ^2(60+\theta) = \frac{3}{2} 2 ( 60 + θ ) = 2 3
Cos2 θ ^2\theta 2 θ + Cos2 ( 60 − θ ) ^2(60-\theta) 2 ( 60 − θ ) + Cos2 ( 60 + θ ) = 3 2 ^2(60+\theta) = \frac{3}{2} 2 ( 60 + θ ) = 2 3
tan3 θ = 3 t a n θ − t a n 3 θ 1 − 3 t a n 2 θ 3\theta = \frac{3tan\theta - tan^3\theta}{1-3tan^2\theta} 3 θ = 1 − 3 t a n 2 θ 3 t an θ − t a n 3 θ
Sin2 A ^2A 2 A - Sin2 B ^2B 2 B = Sin(A+B).Sin(A-B) = Cos2 ^2 2 B - Cos2 ^2 2 A
Cos2 A ^2A 2 A - Sin2 B ^2B 2 B = Cos(A+B).Cos(A-B)
Sin(A+B+C) = SinA.CosB.CosC + SinB.CosA.CosC + SinC.CosA.CosB - SinA.SinB.SinC
Cos(A+B+C) = CosA.CosB.CosC - SinA.SinB.CosC - SinA.CosB.SinC - CosA.SinB.SinC
tan(A+B+C) = t a n A + t a n B + t a n C − t a n A . t a n B . t a n C 1 − t a n A . t a n B − t a n B t a n C − t a n C t a n A \frac{tanA + tanB + tanC - tanA.tanB.tanC}{1-tanA.tanB-tanBtanC-tanCtanA} 1 − t an A . t an B − t an Bt an C − t an Ct an A t an A + t an B + t an C − t an A . t an B . t an C
If tanA + tanB + tanC = tanA.tanB.tanC, then A + B + C = n π , n ∈ I n\pi, n \in I nπ , n ∈ I
If tanA.tanB + tanB.tanC + tanC.tanA = 1, then A + B + C = ( 2 n + 1 ) π 2 , n ∈ I (2n+1)\frac{\pi}{2}, n \in I ( 2 n + 1 ) 2 π , n ∈ I
Cosθ \theta θ .Cos2 θ 2\theta 2 θ .Cos4 θ 4\theta 4 θ ....Cos( 2 n − 1 θ ) = S i n ( 2 n θ ) 2 n S i n θ (2^{n-1}\theta) = \frac{Sin(2^n \theta)}{2^n Sin\theta} ( 2 n − 1 θ ) = 2 n S in θ S in ( 2 n θ )
CotA - tanA = 2Cot2A
Sinα \alpha α + Sin( α + β ) (\alpha + \beta) ( α + β ) + Sin( α + 2 β ) (\alpha + 2\beta) ( α + 2 β ) + ...+ Sin( α + ( n − 1 ) ‾ β ) (\alpha + \overline{(n-1)}\beta) ( α + ( n − 1 ) β ) = S i n ( α + ( n − 1 2 ) β ) S i n ( n β 2 ) S i n ( β 2 ) \frac{Sin(\alpha + (\frac{n-1}{2})\beta)Sin(\frac{n\beta}{2})}{Sin(\frac{\beta}{2})} S in ( 2 β ) S in ( α + ( 2 n − 1 ) β ) S in ( 2 n β )
Cosα \alpha α + Cos( α + β ) (\alpha + \beta) ( α + β ) + Cos( α + 2 β ) (\alpha + 2\beta) ( α + 2 β ) + ...+ Cos( α + ( n − 1 ) ‾ β ) (\alpha + \overline{(n-1)}\beta) ( α + ( n − 1 ) β ) = C o s ( α + ( n − 1 2 ) β ) S i n ( n β 2 ) S i n ( β 2 ) \frac{Cos(\alpha + (\frac{n-1}{2})\beta)Sin(\frac{n\beta}{2})}{Sin(\frac{\beta}{2})} S in ( 2 β ) C os ( α + ( 2 n − 1 ) β ) S in ( 2 n β )
6. Some special angles value for Trigonometric Ratios:
Sin18o = 5 − 1 4 = C o s 7 2 o = S i n ( π 10 ) ^o = \frac{\sqrt{5}-1}{4} = Cos72^o = Sin(\frac{\pi}{10}) o = 4 5 − 1 = C os 7 2 o = S in ( 10 π )
Cos36o = 5 + 1 4 = S i n 5 4 o = S i n ( π 5 ) ^o = \frac{\sqrt{5}+1}{4} = Sin54^o = Sin(\frac{\pi}{5}) o = 4 5 + 1 = S in 5 4 o = S in ( 5 π )
Sin15o = 3 − 1 2 2 = C o s 7 5 o = S i n ( π 12 ) ^o = \frac{\sqrt{3}-1}{2\sqrt{2}} = Cos75^o = Sin(\frac{\pi}{12}) o = 2 2 3 − 1 = C os 7 5 o = S in ( 12 π )
Cos15o = 3 + 1 2 2 = S i n 7 5 o = C o s ( π 12 ) ^o = \frac{\sqrt{3}+1}{2\sqrt{2}} = Sin75^o = Cos(\frac{\pi}{12}) o = 2 2 3 + 1 = S in 7 5 o = C os ( 12 π )
tan15o = 2 − 3 = 3 − 1 3 + 1 = C o t ( 5 π 12 ) = t a n ( π 12 ) ^o = 2 - \sqrt{3} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = Cot(\frac{5\pi}{12}) = tan(\frac{\pi}{12}) o = 2 − 3 = 3 + 1 3 − 1 = C o t ( 12 5 π ) = t an ( 12 π )
tan75o = 2 + 3 = 3 + 1 3 − 1 = C o t ( π 12 ) = t a n ( 5 π 12 ) ^o = 2 + \sqrt{3} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = Cot(\frac{\pi}{12}) = tan(\frac{5\pi}{12}) o = 2 + 3 = 3 − 1 3 + 1 = C o t ( 12 π ) = t an ( 12 5 π )
tan(22.5)o = 2 − 1 = c o t ( 67.5 ) o = C o t ( 3 π 8 ) = t a n ( π 8 ) ^o = \sqrt{2} - 1 = cot(67.5)^o = Cot(\frac{3\pi}{8}) = tan(\frac{\pi}{8}) o = 2 − 1 = co t ( 67.5 ) o = C o t ( 8 3 π ) = t an ( 8 π )
tan(67.5)o = 2 + 1 = c o t ( 22.5 ) o ^o = \sqrt{2} + 1 = cot(22.5)^o o = 2 + 1 = co t ( 22.5 ) o
I m p o r t a n t N o t e : \bold{Important \space Note:} Important Note :
( a ) \bold{(a)} ( a ) The sum of interior angles of a polygon of n-sides = ( n − 2 ) (n - 2) ( n − 2 ) X 18 0 o = ( n − 2 ) π . 180^o = (n - 2)\pi. 18 0 o = ( n − 2 ) π .
( b ) \bold{(b)} ( b ) Each interior angle of a regular polygon of n sides = ( n − 2 ) n \frac{(n-2)}{n} n ( n − 2 ) X 18 0 o = ( n − 2 ) n π . 180^o = \frac{(n-2)}{n}\pi. 18 0 o = n ( n − 2 ) π .
( c ) \bold{(c)} ( c ) Sum of exterior angles of a polygon of any number of sides = 360o = 2 π ^o = 2\pi o = 2 π
6. Maximum and Minimum values of Trigonometric Expressions:
( a ) \bold{(a)} ( a ) The value of acosθ \theta θ + bsinθ \theta θ will always lie in the interval [ − a 2 + b 2 , a 2 + b 2 ] [-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}] [ − a 2 + b 2 , a 2 + b 2 ] , i.e. the maximum and minimum values are − a 2 + b 2 , a 2 + b 2 -\sqrt{a^2+b^2}, \sqrt{a^2+b^2} − a 2 + b 2 , a 2 + b 2 respectively.
( b ) \bold{(b)} ( b ) Minimum value of a 2 t a n 2 θ + b 2 c o t 2 θ = 2 a b , a^2tan^2\theta + b^2cot^2\theta = 2ab, a 2 t a n 2 θ + b 2 co t 2 θ = 2 ab , where a, b > 0
( c ) \bold{(c)} ( c ) Minimum value of a 2 c o s 2 θ + b 2 s e c 2 θ a^2cos^2\theta + b^2sec^2\theta a 2 co s 2 θ + b 2 se c 2 θ or a 2 s i n 2 θ + b 2 c o s e c 2 θ a^2sin^2\theta + b^2cosec^2\theta a 2 s i n 2 θ + b 2 cose c 2 θ is either 2ab (when |a| ≥ \ge ≥ |b|) or a 2 + b 2 a^2 + b^2 a 2 + b 2 (when |a| ≤ \le ≤ |b|)
R e l a t e d P a g e s : \color{red} \bold{Related \space Pages:} Related Pages :
Trignometric Equation Formula Sheet
Quadratic Equation Formula Sheet
Operation on Matrices
Matrices Formula Sheet