image
image
image
image
image
image
image
image
image
image

Trignometric-ratio Formula Sheet

This page will help you to revise formulas and concepts of Trignometric-ratio instantly for various exams.
image
image
image
image
image
image
image
image

Trigonometric ratios (sine, cosine, tangent, etc.) describe the relationships between the angles and sides of a right triangle, while
Trigonometric identities are equations involving these ratios that hold for all values of the included angles within their domains.

Neetesh Kumar | May 17, 2024                                       \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon

1. Relation between Degree, Grade, and Radian:

D90=G100=2Cπ\frac{D}{90} = \frac{G}{100} = \frac{2C}{\pi}
1 Radian = 180π\frac{180}{\pi} degree \approx 57o171557^o17'15'' (approximately)
1 Degree = π180\frac{\pi}{180} radian \approx 0.0175 radian

2. General Trigonometric Identities:

(a)\bold{(a)} Sin2θ^2\theta + Cos2θ=1^2\theta = 1
(b)\bold{(b)} Sec2θ^2\theta - tan2θ=1^2\theta = 1
(c)\bold{(c)} Cosec2θ^2\theta - Cot2θ=1^2\theta = 1
(d)\bold{(d)} Secθ\theta + tanθ=k\theta = k \Rightarrow Secθ\theta - tanθ=1k2Secθ=k+1k\theta = \frac{1}{k} \Rightarrow 2Sec\theta = k + \frac{1}{k}
(e)\bold{(e)} Cosecθ\theta + Cotθ=k\theta = k \Rightarrow Cosecθ\theta - Cotθ=1k2Cosecθ=k+1k\theta = \frac{1}{k} \Rightarrow 2Cosec\theta = k + \frac{1}{k}

3. Sign Convention in different Quadrants:

Sign Convention in different Quadrants

4. Trigonometric Functions of Allied angles:

(a)\bold{(a)} Sin(2nπ+θ2n\pi + \theta) = Sin(θ\theta) & Cos(2nπ+θ2n\pi + \theta) = Cos(θ\theta) where n \in I
(b)\bold{(b)}

  • Sin(θ-\theta) = -Sin(θ\theta)
  • Cos(θ-\theta) = Cos(θ\theta)
  • Sin(90θ90-\theta) = Cos(θ\theta)
  • Cos(90θ90-\theta) = Sin(θ\theta)
  • Sin(90+θ90+\theta) = Cos(θ\theta)
  • Cos(90+θ90+\theta) = -Sin(θ\theta)
  • Sin(180θ180-\theta) = Sin(θ\theta)
  • Cos(180θ180-\theta) = -Cos(θ\theta)
  • Sin(180+θ180+\theta) = -Sin(θ\theta)
  • Cos(180+θ180+\theta) = -Cos(θ\theta)
  • Sin(270θ270-\theta) = -Cos(θ\theta)
  • Cos(270θ270-\theta) = -Sin(θ\theta)
  • Sin(270+θ270+\theta) = -Cos(θ\theta)
  • Cos(270+θ270+\theta) = Sin(θ\theta)

(c)\bold{(c)} Sin(nπ)=0;Cos(nπ)=(1)n;tan(nπ)=0(n\pi)=0; Cos(n\pi) = (-1)^n; tan(n\pi)=0 where n \in I
(d)\bold{(d)} Sin(2n+1)π2=(1)n;(2n+1)\frac{\pi}{2} = (-1)^n; Cos(2n+1)π2=0(2n+1)\frac{\pi}{2} = 0 where n \in I

5. Important Trigonometric Formulae:

  • Sin(A + B) = SinA.CosB + CosA.SinB

  • Sin(A - B) = SinA.CosB - CosA.SinB

  • Cos(A + B) = CosA.CosB - SinA.SinB

  • Cos(A - B) = CosA.CosB + SinA.SinB

  • tan(A + B) = tanA+tanB1tanA.tanB\frac{tanA + tanB}{1-tanA.tanB}

  • tan(A - B) = tanAtanB1+tanA.tanB\frac{tanA - tanB}{1+tanA.tanB}

  • Cot(A+B) = CotB.CotA1CotB+CotA\frac{CotB.CotA - 1}{CotB + CotA}

  • Cot(A-B) = CotB.CotA+1CotBCotA\frac{CotB.CotA + 1}{CotB - CotA}

  • 2SinA.CosB = Sin(A+B) + Sin(A-B)

  • 2CosA.SinB = Sin(A+B) - Sin(A-B)

  • 2CosA.CosB = Cos(A+B) + Cos(A-B)

  • 2SinA.SinB = Cos(A-B) - Cos(A+B)

  • SinC + SinD = 2Sin(C+D2)(\frac{C+D}{2}).Cos(CD2)(\frac{C-D}{2})

  • SinC - SinD = 2Cos(C+D2)(\frac{C+D}{2}).Sin(CD2)(\frac{C-D}{2})

  • CosC + CosD = 2Cos(C+D2)(\frac{C+D}{2}).Cos(CD2)(\frac{C-D}{2})

  • CosC - CosD = -2Sin(C+D2)(\frac{C+D}{2}).Sin(CD2)(\frac{C-D}{2})

  • Sin2θ=2\theta = 2Sinθ\theta.Cosθ=2tanθ1+tan2θ\theta = \frac{2tan\theta}{1+tan^2\theta}

  • Cos2θ=2\theta= Cos2θ^2\theta - Sin2θ^2\theta = 2Cos2θ1=12^2\theta - 1 = 1 - 2Sin2θ=1tan2θ1+tan2θ^2\theta = \frac{1-tan^2\theta}{1+tan^2\theta}

  • 1 - Cos2θ2\theta = 2Sin2θ^2\theta or |Sinθ\theta| = 1Cos2θ2\frac{1-Cos2\theta}{2}

  • tanθ=1Cos2θSin2θ=Sin2θ1+Cos2θ\theta = \frac{1-Cos2\theta}{Sin2\theta} = \frac{Sin2\theta}{1+Cos2\theta}

  • tan2θ=2tanθ1tan2θ2\theta = \frac{2tan\theta}{1-tan^2\theta}

  • Sin3θ3\theta = 3Sinθ\theta - 4Sin3θ^3\theta

  • Cos3θ3\theta = 4Cos3θ^3\theta - 3Cosθ\theta

  • Sinθ\theta.Sin(60θ)(60-\theta).Sin(60+θ)=14Sin(3θ)(60+\theta) = \frac{1}{4}Sin(3\theta)

  • Cosθ\theta.Cos(60θ)(60-\theta).Cos(60+θ)=14Cos(3θ)(60+\theta) = \frac{1}{4}Cos(3\theta)

  • tanθ\theta.tan(60θ)(60-\theta).tan(60+θ)=tan(3θ)(60+\theta) = tan(3\theta)

  • cotθ\theta.cot(60θ)(60-\theta).cot(60+θ)=cot(3θ)(60+\theta) = cot(3\theta)

  • Sin2θ^2\theta + Sin2(60θ)^2(60-\theta) + Sin2(60+θ)=32^2(60+\theta) = \frac{3}{2}

  • Cos2θ^2\theta + Cos2(60θ)^2(60-\theta) + Cos2(60+θ)=32^2(60+\theta) = \frac{3}{2}

  • tan3θ=3tanθtan3θ13tan2θ3\theta = \frac{3tan\theta - tan^3\theta}{1-3tan^2\theta}

  • Sin2A^2A - Sin2B^2B = Sin(A+B).Sin(A-B) = Cos2^2B - Cos2^2A

  • Cos2A^2A - Sin2B^2B = Cos(A+B).Cos(A-B)

  • Sin(A+B+C) = SinA.CosB.CosC + SinB.CosA.CosC + SinC.CosA.CosB - SinA.SinB.SinC

  • Cos(A+B+C) = CosA.CosB.CosC - SinA.SinB.CosC - SinA.CosB.SinC - CosA.SinB.SinC

  • tan(A+B+C) = tanA+tanB+tanCtanA.tanB.tanC1tanA.tanBtanBtanCtanCtanA\frac{tanA + tanB + tanC - tanA.tanB.tanC}{1-tanA.tanB-tanBtanC-tanCtanA}

  • If tanA + tanB + tanC = tanA.tanB.tanC, then A + B + C = nπ,nIn\pi, n \in I

  • If tanA.tanB + tanB.tanC + tanC.tanA = 1, then A + B + C = (2n+1)π2,nI(2n+1)\frac{\pi}{2}, n \in I

  • Cosθ\theta.Cos2θ2\theta.Cos4θ4\theta....Cos(2n1θ)=Sin(2nθ)2nSinθ(2^{n-1}\theta) = \frac{Sin(2^n \theta)}{2^n Sin\theta}

  • CotA - tanA = 2Cot2A

  • Sinα\alpha + Sin(α+β)(\alpha + \beta) + Sin(α+2β)(\alpha + 2\beta) + ...+ Sin(α+(n1)β)(\alpha + \overline{(n-1)}\beta) = Sin(α+(n12)β)Sin(nβ2)Sin(β2)\frac{Sin(\alpha + (\frac{n-1}{2})\beta)Sin(\frac{n\beta}{2})}{Sin(\frac{\beta}{2})}

  • Cosα\alpha + Cos(α+β)(\alpha + \beta) + Cos(α+2β)(\alpha + 2\beta) + ...+ Cos(α+(n1)β)(\alpha + \overline{(n-1)}\beta) = Cos(α+(n12)β)Sin(nβ2)Sin(β2)\frac{Cos(\alpha + (\frac{n-1}{2})\beta)Sin(\frac{n\beta}{2})}{Sin(\frac{\beta}{2})}

6. Some special angles value for Trigonometric Ratios:

  • Sin18o=514=Cos72o=Sin(π10)^o = \frac{\sqrt{5}-1}{4} = Cos72^o = Sin(\frac{\pi}{10})

  • Cos36o=5+14=Sin54o=Sin(π5)^o = \frac{\sqrt{5}+1}{4} = Sin54^o = Sin(\frac{\pi}{5})

  • Sin15o=3122=Cos75o=Sin(π12)^o = \frac{\sqrt{3}-1}{2\sqrt{2}} = Cos75^o = Sin(\frac{\pi}{12})

  • Cos15o=3+122=Sin75o=Cos(π12)^o = \frac{\sqrt{3}+1}{2\sqrt{2}} = Sin75^o = Cos(\frac{\pi}{12})

  • tan15o=23=313+1=Cot(5π12)=tan(π12)^o = 2 - \sqrt{3} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = Cot(\frac{5\pi}{12}) = tan(\frac{\pi}{12})

  • tan75o=2+3=3+131=Cot(π12)=tan(5π12)^o = 2 + \sqrt{3} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} = Cot(\frac{\pi}{12}) = tan(\frac{5\pi}{12})

  • tan(22.5)o=21=cot(67.5)o=Cot(3π8)=tan(π8)^o = \sqrt{2} - 1 = cot(67.5)^o = Cot(\frac{3\pi}{8}) = tan(\frac{\pi}{8})

  • tan(67.5)o=2+1=cot(22.5)o^o = \sqrt{2} + 1 = cot(22.5)^o

Important Note:\bold{Important \space Note:}
(a)\bold{(a)} The sum of interior angles of a polygon of n-sides = (n2)(n - 2) X 180o=(n2)π.180^o = (n - 2)\pi.
(b)\bold{(b)} Each interior angle of a regular polygon of n sides = (n2)n\frac{(n-2)}{n} X 180o=(n2)nπ.180^o = \frac{(n-2)}{n}\pi.
(c)\bold{(c)} Sum of exterior angles of a polygon of any number of sides = 360o=2π^o = 2\pi

6. Maximum and Minimum values of Trigonometric Expressions:

(a)\bold{(a)} The value of acosθ\theta + bsinθ\theta will always lie in the interval [a2+b2,a2+b2][-\sqrt{a^2+b^2}, \sqrt{a^2+b^2}], i.e. the maximum and minimum values are a2+b2,a2+b2-\sqrt{a^2+b^2}, \sqrt{a^2+b^2} respectively.

(b)\bold{(b)} Minimum value of a2tan2θ+b2cot2θ=2ab,a^2tan^2\theta + b^2cot^2\theta = 2ab, where a, b > 0

(c)\bold{(c)} Minimum value of a2cos2θ+b2sec2θa^2cos^2\theta + b^2sec^2\theta or a2sin2θ+b2cosec2θa^2sin^2\theta + b^2cosec^2\theta is either 2ab (when |a| \ge |b|) or a2+b2a^2 + b^2 (when |a| \le |b|)

Related Pages:\color{red} \bold{Related \space Pages:}
Trignometric Equation Formula Sheet
Quadratic Equation Formula Sheet
Operation on Matrices
Matrices Formula Sheet

image
image
image
image
image
image
image
image
image
image