image
image
image
image
image
image
image
image
image
image

(a) Calculate, to four decimal places, the first ten terms of the sequence: an=1+(25)n.a_n = 1 + \left(-\frac{2}{5}\right)^n.

nnana_n
1?\boxed{?}
2?\boxed{?}
3?\boxed{?}
4?\boxed{?}
5?\boxed{?}
6?\boxed{?}
7?\boxed{?}
8?\boxed{?}
9?\boxed{?}
10?\boxed{?}

(b) Does the sequence appear to have a limit?

  • Yes
  • No

(c) If so, calculate it. If not, enter DNE.

?\boxed{?}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

(a) calculate, to four decimal places, the first ten terms of the sequence: an=1+(25)n.a_n = 1 + \left(-\frac{2}{5}\right)^n.

nnana_n
1?\boxed{?}
2?\boxed{?}
3?\boxed{?}
4?\boxed{?}
5?\boxed{?}
6?\boxed{?}
7?\boxed{?}
8?\boxed{?}
9?\boxed{?}
10?\boxed{?}

(b) does the sequence appear to have a limit?

  • yes
  • no

(c) if so, calculate it. if not, enter dne.

?\boxed{?}

(a) calculate, to four decimal places, the first ten terms of the sequence:
| Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 29, 2024

Calculus Homework Help

This is the solution to Math 1c
Assignment: 11.1 Question Number 6
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

The given sequence is:

an=1+(25)n.a_n = 1 + \left(-\frac{2}{5}\right)^n.

Step 1: Calculate the first ten terms of the sequence:

For each nn, substitute the value of nn into the formula ana_n and evaluate to four decimal places:

  1. For n=1n = 1:

    a1=1+(25)1=125=10.4=0.6a_1 = 1 + \left(-\frac{2}{5}\right)^1 = 1 - \frac{2}{5} = 1 - 0.4 = 0.6

  2. For n=2n = 2:

    a2=1+(25)2=1+(425)=1+0.16=1.16a_2 = 1 + \left(-\frac{2}{5}\right)^2 = 1 + \left(\frac{4}{25}\right) = 1 + 0.16 = 1.16

  3. For n=3n = 3:

    a3=1+(25)3=18125=10.064=0.936a_3 = 1 + \left(-\frac{2}{5}\right)^3 = 1 - \frac{8}{125} = 1 - 0.064 = 0.936

  4. For n=4n = 4:

    a4=1+(25)4=1+16625=1+0.0256=1.0256.a_4 = 1 + \left(-\frac{2}{5}\right)^4 = 1 + \frac{16}{625} = 1 + 0.0256 = 1.0256.

  5. For n=5n = 5:

    a5=1+(25)5=1323125=10.01024=0.98976a_5 = 1 + \left(-\frac{2}{5}\right)^5 = 1 - \frac{32}{3125} = 1 - 0.01024 = 0.98976

  6. For n=6n = 6:

    a6=1+(25)6=1+6415625=1+0.004096=1.004096a_6 = 1 + \left(-\frac{2}{5}\right)^6 = 1 + \frac{64}{15625} = 1 + 0.004096 = 1.004096

  7. For n=7n = 7:

    a7=1+(25)7=112878125=10.0016384=0.9983616a_7 = 1 + \left(-\frac{2}{5}\right)^7 = 1 - \frac{128}{78125} = 1 - 0.0016384 = 0.9983616

  8. For n=8n = 8:

    a8=1+(25)8=1+256390625=1+0.00065536=1.0007a_8 = 1 + \left(-\frac{2}{5}\right)^8 = 1 + \frac{256}{390625} = 1 + 0.00065536 = 1.0007

  9. For n=9n = 9:

    a9=1+(25)9=15121953125=10.000262144=0.9997a_9 = 1 + \left(-\frac{2}{5}\right)^9 = 1 - \frac{512}{1953125} = 1 - 0.000262144 = 0.9997

  10. For n=10n = 10:

    a10=1+(25)10=1+10249765625=1+0.0001048576=1.0001048a_{10} = 1 + \left(-\frac{2}{5}\right)^{10} = 1 + \frac{1024}{9765625} = 1 + 0.0001048576 = 1.0001048

Thus, the first ten terms are:

nnana_n
10.6
21.16
30.936
41.0256
50.98976
61.004096
70.9983616
81.0007
90.9997
101.0001048

Step 2: Determine if the sequence has a limit:

As nn increases, the term (25)n\left(-\frac{2}{5}\right)^n approaches 00 because 25-\frac{2}{5} has an absolute value less than 11:

limn(25)n=0.\displaystyle\lim_{n \to \infty} \left(-\frac{2}{5}\right)^n = 0.

Thus, the sequence ana_n approaches:

limnan=1+0=1.\displaystyle\lim_{n \to \infty} a_n = 1 + 0 = 1.

Final Answer:

(a)

nnana_n
10.6\boxed{0.6}
21.16\boxed{1.16}
30.936\boxed{0.936}
41.0256\boxed{1.0256}
50.98976\boxed{0.98976}
61.004096\boxed{1.004096}
70.9983616\boxed{0.9983616}
81.0007\boxed{1.0007}
90.9997\boxed{0.9997}
101.0001048\boxed{1.0001048}

(b) Yes\boxed{\text{Yes}}

(c) 1\boxed{1}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)