image
image
image
image
image
image
image
image
image
image

(a) For integer n1n \geq 1, use upper and lower Riemann sums with nn equal subdivisions to find an upper and lower bound for the value of:

01(12x3)dx\int_0^1 (1 - 2x^3) \, dx

You may use the following fact without proof: k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2 (n+1)^2}{4}

(b) Evaluate: 01(12x3)dx\int_0^1 (1 - 2x^3) \, dx using the definition of the Riemann integral.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

(a) for integer n1n \geq 1, use upper and lower riemann sums with nn equal subdivisions to find an upper and lower bound for the value of:

01(12x3)dx\int_0^1 (1 - 2x^3) \, dx

you may use the following fact without proof: k=1nk3=(n(n+1)2)2=n2(n+1)24\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 = \frac{n^2 (n+1)^2}{4}

(b) evaluate: 01(12x3)dx\int_0^1 (1 - 2x^3) \, dx using the definition of the riemann integral.

(a) for integer n \geq 1, use upper and lower riemann sums with n equal subd | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 21, 2024

Calculus Homework Help

Riemann Sum
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Part (a): Upper and Lower Riemann Sums

We are asked to approximate the integral 01(12x3)dx\int_0^1 (1 - 2x^3) \, dx using Riemann sums. First, divide the interval [0,1][0,1] into nn equal subintervals, each of width Δx=1n\Delta x = \frac{1}{n}.

The function f(x)=12x3f(x) = 1 - 2x^3 is decreasing on the interval [0,1][0,1], which means that for the upper sum, we will evaluate the function at the left endpoint of each subinterval, and for the lower sum, we will evaluate it at the right endpoint.

Step 1: Lower Sum

The lower sum is calculated by evaluating the function at the right endpoints of the subintervals:

xk=knx_k = \frac{k}{n}, where k=1,2,3,,nk = 1, 2, 3, \ldots, n

The lower sum is:

Ln=k=1nf(kn)Δx=k=1n(12(kn)3)1nL_n = \sum_{k=1}^{n} f \left( \frac{k}{n} \right) \Delta x = \sum_{k=1}^{n} \left( 1 - 2 \left( \frac{k}{n} \right)^3 \right) \frac{1}{n}

Simplifying the expression:

Ln=1nk=1n(12k3n3)L_n = \frac{1}{n} \sum_{k=1}^{n} \left( 1 - 2 \frac{k^3}{n^3} \right)

Ln=1n(k=1n121n3k=1nk3)L_n = \frac{1}{n} \left( \sum_{k=1}^{n} 1 - 2 \frac{1}{n^3} \sum_{k=1}^{n} k^3 \right)

Using the given fact for k=1nk3\sum_{k=1}^{n} k^3:

k=1nk3=n2(n+1)24\sum_{k=1}^{n} k^3 = \frac{n^2 (n+1)^2}{4}

Substituting this into the expression for LnL_n:

Ln=1n(n21n3n2(n+1)24)L_n = \frac{1}{n} \left( n - 2 \frac{1}{n^3} \cdot \frac{n^2 (n+1)^2}{4} \right)

Simplifying:

Ln=1(n+1)22n2L_n = 1 - \frac{(n+1)^2}{2n^2}

Step 2: Upper Sum

The upper sum is calculated by evaluating the function at the left endpoints of the subintervals:

xk1=k1nx_{k-1} = \frac{k-1}{n}, where k=1,2,3,,nk = 1, 2, 3, \ldots, n

The upper sum is:

Un=k=1nf(k1n)Δx=k=1n(12(k1n)3)1nU_n = \sum_{k=1}^{n} f \left( \frac{k-1}{n} \right) \Delta x = \sum_{k=1}^{n} \left( 1 - 2 \left( \frac{k-1}{n} \right)^3 \right) \frac{1}{n}

Simplifying the expression:

Un=1nk=1n(12(k1)3n3)U_n = \frac{1}{n} \sum_{k=1}^{n} \left( 1 - 2 \frac{(k-1)^3}{n^3} \right)

Un=1n(k=1n121n3k=1n(k1)3)U_n = \frac{1}{n} \left( \sum_{k=1}^{n} 1 - 2 \frac{1}{n^3} \sum_{k=1}^{n} (k-1)^3 \right)

Since k=1n(k1)3=k=0n1k3\sum_{k=1}^{n} (k-1)^3 = \sum_{k=0}^{n-1} k^3, we use the same formula for the sum of cubes:

k=0n1k3=(n1)2n24\sum_{k=0}^{n-1} k^3 = \frac{(n-1)^2 n^2}{4}

Substituting into UnU_n:

Un=1n22(n1)2U_n = 1 - \frac{n^2}{2(n-1)^2}

Step 3: Conclusion for Part (a)

The lower sum provides a lower bound and the upper sum provides an upper bound for the integral:

Lower bound: (1(n+1)22n2)\text{Lower bound: } \bigg(1 - \frac{(n+1)^2}{2n^2}\bigg)

Upper bound: (1n22(n1)2)\text{Upper bound: } \bigg(1 - \frac{n^2}{2(n-1)^2}\bigg)


Part (b): Evaluate the Integral

We now evaluate the integral 01(12x3)dx\int_0^1 (1 - 2x^3) \, dx using the definition of the Riemann integral.

The integral is:

01(12x3)dx=011dx201x3dx\int_0^1 (1 - 2x^3) \, dx = \int_0^1 1 \, dx - 2 \int_0^1 x^3 \, dx

First, evaluate 011dx\int_0^1 1 \, dx:

011dx=x01=1\int_0^1 1 \, dx = x \Big|_0^1 = 1

Next, evaluate 01x3dx\int_0^1 x^3 \, dx:

01x3dx=x4401=144044=14\int_0^1 x^3 \, dx = \frac{x^4}{4} \Big|_0^1 = \frac{1^4}{4} - \frac{0^4}{4} = \frac{1}{4}

Now, substitute these into the original expression:

01(12x3)dx=12×14=112=12\int_0^1 (1 - 2x^3) \, dx = 1 - 2 \times \frac{1}{4} = 1 - \frac{1}{2} = \frac{1}{2}

Final Answer:

(a) The upper and lower bounds are:

  • Lower bound: (1(n+1)22n2)\bigg(1 - \dfrac{(n+1)^2}{2n^2}\bigg)
  • Upper bound: (1n22(n1)2)\bigg(1 - \dfrac{n^2}{2(n-1)^2}\bigg)

(b) The exact value of the integral is: 01(12x3)dx=12\int_0^1 (1 - 2x^3) \, dx = \dfrac{1}{2}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)