image
image
image
image
image
image
image
image
image
image

A lamina with constant density ρ(x,y)=ρ\rho(x, y) = \rho occupies the given region. Find the moments of inertia IxI_x and IyI_y and the radii of gyration xˉ\bar{x} and yˉ\bar{y}. The region is the rectangle 0x2b0 \leq x \leq 2b, 0y4h0 \leq y \leq 4h.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

A lamina with constant density ρ(x,y)=ρ\rho(x, y) = \rho occupies the given region. find the moments of inertia ixi_x and iyi_y and the radii of gyration xˉ\bar{x} and yˉ\bar{y}. the region is the rectangle 0x2b0 \leq x \leq 2b, 0y4h0 \leq y \leq 4h.

A lamina with constant density \rho(x, y) = \rho occupies the given region. fi | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 27, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 15.4 Question Number 11
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Definitions of moments of inertia and radii of gyration

  1. Moment of inertia about the xx-axis: Ix=Dy2ρdAI_x = \iint_D y^2 \rho \, dA

  2. Moment of inertia about the yy-axis: Iy=Dx2ρdAI_y = \iint_D x^2 \rho \, dA

  3. Radii of gyration: xˉ=Iym,yˉ=Ixm\bar{x} = \sqrt{\frac{I_y}{m}}, \quad \bar{y} = \sqrt{\frac{I_x}{m}}

The mass mm is given by: m=DρdAm = \iint_D \rho \, dA

Step 2: Compute the mass mm

The region DD is the rectangle 0x2b0 \leq x \leq 2b and 0y4h0 \leq y \leq 4h. The area element is dA=dxdydA = dx \, dy.

m=02b04hρdydxm = \int_0^{2b} \int_0^{4h} \rho \, dy \, dx

Evaluate the yy-integral: 04hρdy=ρ04h1dy=ρ(4h0)=4hρ\int_0^{4h} \rho \, dy = \rho \int_0^{4h} 1 \, dy = \rho \cdot (4h - 0) = 4h\rho

Now, integrate with respect to xx: m=02b4hρdx=4hρ(2b0)=8bhρm = \int_0^{2b} 4h\rho \, dx = 4h\rho \cdot (2b - 0) = 8bh\rho

Thus, the mass is: m=8bhρm = 8bh\rho

Step 3: Compute IxI_x

The moment of inertia about the xx-axis is: Ix=02b04hy2ρdydxI_x = \int_0^{2b} \int_0^{4h} y^2 \rho \, dy \, dx

First, evaluate the yy-integral: 04hy2ρdy=ρ[y33]04h=ρ(4h)33=ρ64h33\int_0^{4h} y^2 \rho \, dy = \rho \cdot \left[\frac{y^3}{3}\right]_0^{4h} = \rho \cdot \frac{(4h)^3}{3} = \rho \cdot \frac{64h^3}{3}

Substitute into IxI_x: Ix=02b64h3ρ3dxI_x = \int_0^{2b} \frac{64h^3\rho}{3} \, dx

Factor out constants: Ix=64h3ρ3(2b0)I_x = \frac{64h^3\rho}{3} \cdot (2b - 0)

Simplify: Ix=128bh3ρ3I_x = \frac{128bh^3\rho}{3}

Step 4: Compute IyI_y

The moment of inertia about the yy-axis is: Iy=02b04hx2ρdydxI_y = \int_0^{2b} \int_0^{4h} x^2 \rho \, dy \, dx

First, evaluate the yy-integral: 04hρdy=ρ(4h0)=4hρ\int_0^{4h} \rho \, dy = \rho \cdot (4h - 0) = 4h\rho

Substitute into IyI_y: Iy=02bx2(4hρ)dxI_y = \int_0^{2b} x^2 (4h\rho) \, dx

Factor out constants: Iy=4hρ02bx2dxI_y = 4h\rho \int_0^{2b} x^2 \, dx

Evaluate the xx-integral: 02bx2dx=[x33]02b=(2b)33=8b33\int_0^{2b} x^2 \, dx = \left[\frac{x^3}{3}\right]_0^{2b} = \frac{(2b)^3}{3} = \frac{8b^3}{3}

Substitute back: Iy=4hρ8b33=32b3hρ3I_y = 4h\rho \cdot \frac{8b^3}{3} = \frac{32b^3h\rho}{3}

Step 5: Compute xˉ\bar{x} and yˉ\bar{y}

The radii of gyration are: xˉ=Iym,yˉ=Ixm\bar{x} = \sqrt{\frac{I_y}{m}}, \quad \bar{y} = \sqrt{\frac{I_x}{m}}

Substitute Iy=32b3hρ3I_y = \frac{32b^3h\rho}{3} and m=8bhρm = 8bh\rho into xˉ\bar{x}: xˉ=32b3hρ38bhρ=32b238=4b23=2b3\bar{x} = \sqrt{\frac{\frac{32b^3h\rho}{3}}{8bh\rho}} = \sqrt{\frac{32b^2}{3 \cdot 8}} = \sqrt{\frac{4b^2}{3}} = \frac{2b}{\sqrt{3}}

Substitute Ix=128bh3ρ3I_x = \frac{128bh^3\rho}{3} and m=8bhρm = 8bh\rho into yˉ\bar{y}: yˉ=128bh3ρ38bhρ=128h238=16h23=4h3\bar{y} = \sqrt{\frac{\frac{128bh^3\rho}{3}}{8bh\rho}} = \sqrt{\frac{128h^2}{3 \cdot 8}} = \sqrt{\frac{16h^2}{3}} = \frac{4h}{\sqrt{3}}

Final Answers:

Ix=128bh3ρ3I_x = \boxed{\frac{128bh^3\rho}{3}}

Iy=32b3hρ3I_y = \boxed{\frac{32b^3h\rho}{3}}

xˉ=2b3\bar{x} = \boxed{\frac{2b}{\sqrt{3}}}

yˉ=4h3\bar{y} = \boxed{\frac{4h}{\sqrt{3}}}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)