image
image
image
image
image
image
image
image
image
image

Calculate the iterated integral: 01142xexydydx\int_0^1 \int_1^4 \frac{2xe^x}{y} \, dy \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Calculate the iterated integral: 01142xexydydx\int_0^1 \int_1^4 \frac{2xe^x}{y} \, dy \, dx

Calculate the iterated integral:
$\int_0^1 \int_1^4 \frac{2xe^x}{y} , dy , dx | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 29, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 15.1 Question Number 9
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Evaluate the Inner Integral

The inner integral is:

142xexydy\int_1^4 \frac{2xe^x}{y} \, dy

Since 2xex2xe^x is independent of yy, we can factor it out of the integral:

2xex141ydy2xe^x \int_1^4 \frac{1}{y} \, dy

The integral of 1y\frac{1}{y} is lny\ln|y|, so:

2xex[lny]14=2xex(ln(4)ln(1))2xe^x \left[ \ln|y| \right]_1^4 = 2xe^x \left( \ln(4) - \ln(1) \right)

We know that ln(1)=0\ln(1) = 0, so this simplifies to:

2xexln(4)2xe^x \cdot \ln(4)

Thus, the result of the inner integral is:

2xexln(4)2xe^x \cdot \ln(4)

Step 2: Evaluate the Outer Integral

Now, we evaluate the outer integral:

012xexln(4)dx\int_0^1 2xe^x \cdot \ln(4) \, dx

Since ln(4)\ln(4) is a constant, we can factor it out of the integral:

ln(4)012xexdx\ln(4) \int_0^1 2xe^x \, dx

Evaluate the Integral 012xexdx\int_0^1 2xe^x \, dx

We can solve this using integration by parts. Let:

  • u=2xu = 2x, so du=2dxdu = 2 \, dx
  • dv=exdxdv = e^x \, dx, so v=exv = e^x

The integration by parts formula is:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substituting, we get:

2xexdx=2xex2exdx\int 2xe^x \, dx = 2xe^x - \int 2e^x \, dx

The integral of 2ex2e^x is:

2exdx=2ex\int 2e^x \, dx = 2e^x

Thus, we have:

2xexdx=2xex2ex=2ex(x1)\int 2xe^x \, dx = 2xe^x - 2e^x = 2e^x(x - 1)

Now, evaluate from x=0x = 0 to x=1x = 1:

[2ex(x1)]01=2e1(11)2e0(01)=02(1)=2\left[ 2e^x(x - 1) \right]_0^1 = 2e^1(1 - 1) - 2e^0(0 - 1) = 0 - 2(-1) = 2

Step 3: Final Calculation

Now, substitute this result back into the outer integral:

ln(4)×2=2ln(4)\ln(4) \times 2 = 2 \ln(4)

Final Answer:

The value of the iterated integral is:

2ln(4)\boxed{2 \ln(4)}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)