image
image
image
image
image
image
image
image
image
image

Consider the following: x=t2sin(t),y=12cos(t),0t4πx = t - 2\sin(t), \quad y = 1 - 2\cos(t), \quad 0 \leq t \leq 4\pi

  1. Write an integral expression that represents the length of the curve described by the parametric equations.

  2. Use technology to find the length of the curve. (Round your answer to four decimal places.)

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Consider the following: x=t2sin(t),y=12cos(t),0t4πx = t - 2\sin(t), \quad y = 1 - 2\cos(t), \quad 0 \leq t \leq 4\pi

  1. write an integral expression that represents the length of the curve described by the parametric equations.

  2. use technology to find the length of the curve. (round your answer to four decimal places.)

Consider the following:
$x = t - 2\sin(t), \quad y = 1 - 2\cos(t), \quad 0 \leq | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 3, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.2 Question Number 12
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Formula for arc length of a parametric curve

The arc length of a parametric curve is given by:

L=ab(dxdt)2+(dydt)2dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt

Here, x=t2sin(t)x = t - 2\sin(t) and y=12cos(t)y = 1 - 2\cos(t) with t[0,4π]t \in [0, 4\pi].

Step 2: Compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}

Differentiate x=t2sin(t)x = t - 2\sin(t):

dxdt=12cos(t)\frac{dx}{dt} = 1 - 2\cos(t)

Differentiate y=12cos(t)y = 1 - 2\cos(t):

dydt=2sin(t)\frac{dy}{dt} = 2\sin(t)

Step 3: Write the integral for arc length

Substitute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} into the formula for LL:

L=04π(12cos(t))2+(2sin(t))2dtL = \int_0^{4\pi} \sqrt{\left(1 - 2\cos(t)\right)^2 + \left(2\sin(t)\right)^2} \, dt

Simplify the terms inside the square root:

  1. Expand (12cos(t))2\left(1 - 2\cos(t)\right)^2:

    (12cos(t))2=14cos(t)+4cos2(t)\left(1 - 2\cos(t)\right)^2 = 1 - 4\cos(t) + 4\cos^2(t)

  2. Expand (2sin(t))2\left(2\sin(t)\right)^2:

    (2sin(t))2=4sin2(t)\left(2\sin(t)\right)^2 = 4\sin^2(t)

  3. Combine the terms:

    (12cos(t))2+(2sin(t))2=14cos(t)+4cos2(t)+4sin2(t)\left(1 - 2\cos(t)\right)^2 + \left(2\sin(t)\right)^2 = 1 - 4\cos(t) + 4\cos^2(t) + 4\sin^2(t)

Use the Pythagorean identity sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1:

(12cos(t))2+(2sin(t))2=14cos(t)+4(1)\left(1 - 2\cos(t)\right)^2 + \left(2\sin(t)\right)^2 = 1 - 4\cos(t) + 4(1)

Simplify further:

(12cos(t))2+(2sin(t))2=54cos(t)\left(1 - 2\cos(t)\right)^2 + \left(2\sin(t)\right)^2 = 5 - 4\cos(t)

Thus, the arc length is:

L=04π54cos(t)dtL = \int_0^{4\pi} \sqrt{5 - 4\cos(t)} \, dt

Step 4: Use technology to evaluate the integral

Using numerical integration, evaluate:

L=04π54cos(t)dtL = \int_0^{4\pi} \sqrt{5 - 4\cos(t)} \, dt

After computation:

L26.7298L \approx 26.7298

Final Answer:

  1. The integral expression for the arc length is:

L=04π54cos(t)dtL = \int_0^{4\pi} \boxed{\sqrt{5 - 4\cos(t)} \, dt}

  1. The length of the curve is approximately:

L26.7298L \approx \boxed{26.7298}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)