image
image
image
image
image
image
image
image
image
image

Determine whether the sequence converges or diverges. If it converges, find the limit. (If the sequence diverges, enter DIVERGES.) an=ln(n+4)ln(n)a_n = \ln(n + 4) - \ln(n)

Find:

limnan=?\displaystyle\lim_{n \to \infty} a_n = \boxed{?}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Determine whether the sequence converges or diverges. if it converges, find the limit. (if the sequence diverges, enter diverges.) an=ln(n+4)ln(n)a_n = \ln(n + 4) - \ln(n)

find:

limnan=?\displaystyle\lim_{n \to \infty} a_n = \boxed{?}

Determine whether the sequence converges or diverges. if it converges, find the  | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 29, 2024

Calculus Homework Help

This is the solution to Math 1c
Assignment: 11.1 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Simplify using logarithmic properties:

Using the logarithmic property ln(a)ln(b)=ln(ab)\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right), rewrite the sequence:

an=ln(n+4n)a_n = \ln\left(\frac{n + 4}{n}\right)

Simplify the fraction inside the logarithm:

n+4n=1+4n\frac{n + 4}{n} = 1 + \frac{4}{n}

Thus:

an=ln(1+4n)a_n = \ln\left(1 + \frac{4}{n}\right)

Step 2: Evaluate the limit as nn \to \infty:

As nn \to \infty, 4n0\frac{4}{n} \to 0.

Substitute this into the simplified expression:

ln(1+4n)ln(1)\ln\left(1 + \frac{4}{n}\right) \to \ln(1)

Since ln(1)=0\ln(1) = 0, we have:

limnan=0\displaystyle\lim_{n \to \infty} a_n = 0

Step 3: Conclusion:

Since the sequence approaches a finite value, it converges.

Final Answer:

  1. The sequence converges\boxed{\text{converges}}
  2. limnan=0\displaystyle\lim_{n \to \infty} a_n = \boxed{0}

Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)