image
image
image
image
image
image
image
image
image
image

Evaluate the integral by changing to cylindrical coordinates: 339y29y206xzdzdxdy\int_{-3}^3 \int_{-\sqrt{9 - y^2}}^{\sqrt{9 - y^2}} \int_0^6 xz \, dz \, dx \, dy

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral by changing to cylindrical coordinates: 339y29y206xzdzdxdy\int_{-3}^3 \int_{-\sqrt{9 - y^2}}^{\sqrt{9 - y^2}} \int_0^6 xz \, dz \, dx \, dy

Evaluate the integral by changing to cylindrical coordinates:
$\int_{-3}^3 \int | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 26, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 15.7 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Understanding the given integral

The given integral is a triple integral: 339y29y206xzdzdxdy\int_{-3}^3 \int_{-\sqrt{9 - y^2}}^{\sqrt{9 - y^2}} \int_0^6 xz \, dz \, dx \, dy

The limits of integration indicate:

  • For yy, the range is 3y3-3 \leq y \leq 3.
  • For xx, the range depends on yy: 9y2x9y2-\sqrt{9 - y^2} \leq x \leq \sqrt{9 - y^2}, representing a circle in the xx-yy plane with radius 33.
  • For zz, the range is 0z60 \leq z \leq 6.

Step 2: Convert to cylindrical coordinates

Cylindrical coordinates are given by:

  • x=rcosθx = r \cos\theta, y=rsinθy = r \sin\theta, and x2+y2=r2x^2 + y^2 = r^2.
  • The volume element is dV=rdrdθdzdV = r \, dr \, d\theta \, dz.

In cylindrical coordinates:

  • The circle x2+y2=9x^2 + y^2 = 9 becomes r2=9r^2 = 9, so 0r30 \leq r \leq 3.
  • zz remains 0z60 \leq z \leq 6.
  • The angle θ\theta spans the full circle: 0θ2π0 \leq \theta \leq 2\pi.

The integrand xzxz becomes: xz=(rcosθ)zxz = (r\cos\theta)z

Step 3: Rewrite the integral

The integral in cylindrical coordinates becomes: 02π0306(rcosθ)zrdzdrdθ\int_0^{2\pi} \int_0^3 \int_0^6 (r\cos\theta)z \cdot r \, dz \, dr \, d\theta

Simplify the integrand: r(rcosθ)z=r2cosθzr \cdot (r\cos\theta)z = r^2 \cos\theta z

Thus, the integral is: 02π0306r2cosθzdzdrdθ\int_0^{2\pi} \int_0^3 \int_0^6 r^2 \cos\theta z \, dz \, dr \, d\theta

Step 4: Evaluate the integral step-by-step

  1. Innermost integral (over zz): 06zdz=[z22]06=622022=18\int_0^6 z \, dz = \left[\frac{z^2}{2}\right]_0^6 = \frac{6^2}{2} - \frac{0^2}{2} = 18

Substitute back: 02π03r2cosθ18drdθ\int_0^{2\pi} \int_0^3 r^2 \cos\theta \cdot 18 \, dr \, d\theta

  1. Factor out constants: 1802π03r2cosθdrdθ18 \int_0^{2\pi} \int_0^3 r^2 \cos\theta \, dr \, d\theta

  2. Second integral (over rr): 03r2dr=[r33]03=333033=9\int_0^3 r^2 \, dr = \left[\frac{r^3}{3}\right]_0^3 = \frac{3^3}{3} - \frac{0^3}{3} = 9

Substitute back: 18902πcosθdθ18 \cdot 9 \int_0^{2\pi} \cos\theta \, d\theta

  1. Outer integral (over θ\theta): The integral of cosθ\cos\theta over a full period is 00: 02πcosθdθ=0\int_0^{2\pi} \cos\theta \, d\theta = 0

Thus, the entire integral evaluates to: 00

Final Answer:

The value of the given integral is: 0\boxed{0}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)