image
image
image
image
image
image
image
image
image
image

Evaluate the integral by making the given substitution. (Use CC for the constant of integration.) cos8(θ)sin(θ)dθ,u=cos(θ)\int \cos^8(\theta) \sin(\theta) \, d\theta, \quad u = \cos(\theta)

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral by making the given substitution. (use cc for the constant of integration.) cos8(θ)sin(θ)dθ,u=cos(θ)\int \cos^8(\theta) \sin(\theta) \, d\theta, \quad u = \cos(\theta)

Evaluate the integral by making the given substitution. (use c for the constan | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 8, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 5.5 Question Number 2
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We aim to evaluate cos8(θ)sin(θ)dθ\int \cos^8(\theta) \sin(\theta) \, d\theta using the substitution u=cos(θ)u = \cos(\theta).

Step 1: Substitution

Let u=cos(θ)u = \cos(\theta). Differentiate to find dudu:

dudθ=sin(θ)    du=sin(θ)dθ\frac{du}{d\theta} = -\sin(\theta) \quad \implies \quad du = -\sin(\theta) \, d\theta

This allows us to rewrite sin(θ)dθ\sin(\theta) \, d\theta as:

sin(θ)dθ=du\sin(\theta) \, d\theta = -du

Also, cos8(θ)=u8\cos^8(\theta) = u^8 by substitution.

Substitute into the integral:

cos8(θ)sin(θ)dθ=u8(du)\int \cos^8(\theta) \sin(\theta) \, d\theta = \int u^8 \cdot (-du)

Simplify:

cos8(θ)sin(θ)dθ=u8du\int \cos^8(\theta) \sin(\theta) \, d\theta = -\int u^8 \, du

Step 2: Evaluate the simplified integral

The integral of u8u^8 is:

u8du=u99\int u^8 \, du = \frac{u^9}{9}

Substitute this result:

u8du=u99-\int u^8 \, du = -\frac{u^9}{9}

Step 3: Substitute back u=cos(θ)u = \cos(\theta)

Substitute back u=cos(θ)u = \cos(\theta) to return to the original variable:

u99=cos9(θ)9-\frac{u^9}{9} = -\frac{\cos^9(\theta)}{9}

Final Answer:

cos8(θ)sin(θ)dθ=cos9(θ)9+C\int \cos^8(\theta) \sin(\theta) \, d\theta = \boxed{-\frac{\cos^9(\theta)}{9} + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)