image
image
image
image
image
image
image
image
image
image

Evaluate the integral 13(34x)dx\int_{-1}^{3} (3 - 4x) \, dx using the definition of the definite integral: abf(x)dx=limni=1nf(xi)Δx,\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x, where Δx=ban\Delta x = \frac{b - a}{n} and xi=a+iΔxx_i = a + i \cdot \Delta x.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral 13(34x)dx\int_{-1}^{3} (3 - 4x) \, dx using the definition of the definite integral: abf(x)dx=limni=1nf(xi)δx,\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \delta x, where δx=ban\delta x = \frac{b - a}{n} and xi=a+iδxx_i = a + i \cdot \delta x.

Evaluate the integral \int_{-1}^{3} (3 - 4x) \, dx using the definition of the | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 17, 2024

Calculus Homework Help

Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Define the terms

For the integral 13(34x)dx\int_{-1}^3 (3 - 4x) \, dx:

  • a=1a = -1, b=3b = 3.
  • Δx=ban=3(1)n=4n\Delta x = \dfrac{b - a}{n} = \dfrac{3 - (-1)}{n} = \dfrac{4}{n}.
  • xi=a+iΔx=1+i4n=1+4inx_i = a + i \cdot \Delta x = -1 + i \cdot \dfrac{4}{n} = -1 + \dfrac{4i}{n}.

Step 2: Write the Riemann sum

The Riemann sum is:

i=1nf(xi)Δx,\displaystyle\sum_{i=1}^{n} f(x_i) \Delta x,

where f(x)=34xf(x) = 3 - 4x. Substituting xi=1+4inx_i = -1 + \dfrac{4i}{n} into f(x)f(x):

f(xi)=34(1+4in)=34(1)16in=3+416in=716in.f(x_i) = 3 - 4\left(-1 + \dfrac{4i}{n}\right) = 3 - 4(-1) - \dfrac{16i}{n} = 3 + 4 - \dfrac{16i}{n} = 7 - \dfrac{16i}{n}.

Thus:

f(xi)Δx=(716in)4n.f(x_i) \Delta x = \left(7 - \dfrac{16i}{n}\right) \cdot \dfrac{4}{n}.

Expand:

f(xi)Δx=28n64in2.f(x_i) \Delta x = \dfrac{28}{n} - \dfrac{64i}{n^2}.

The Riemann sum becomes:

i=1nf(xi)Δx=i=1n(28n64in2).\displaystyle\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(\dfrac{28}{n} - \dfrac{64i}{n^2}\right).


Step 3: Separate the sum

Split the summation into two parts:

i=1n(28n64in2)=i=1n28ni=1n64in2.\displaystyle\sum_{i=1}^{n} \left(\dfrac{28}{n} - \dfrac{64i}{n^2}\right) = \sum_{i=1}^{n} \dfrac{28}{n} - \sum_{i=1}^{n} \dfrac{64i}{n^2}.

  1. First term: i=1n28n=28nn=28\displaystyle\sum_{i=1}^{n} \dfrac{28}{n} = \dfrac{28}{n} \cdot n = 28

  2. Second term: i=1n64in2\displaystyle\sum_{i=1}^{n} \dfrac{64i}{n^2}: Use the formula for the sum of the first nn integers: i=1ni=n(n+1)2.\displaystyle\sum_{i=1}^{n} i = \dfrac{n(n+1)}{2}.

    Substituting: i=1n64in2=64n2n(n+1)2=64n2n2+n2=64(n+1)2n=32(n+1)n.\displaystyle\sum_{i=1}^{n} \dfrac{64i}{n^2} = \dfrac{64}{n^2} \cdot \dfrac{n(n+1)}{2} = \dfrac{64}{n^2} \cdot \dfrac{n^2 + n}{2} = \dfrac{64(n + 1)}{2n} = \dfrac{32(n + 1)}{n}.


Step 4: Combine the terms

The Riemann sum becomes:

i=1nf(xi)Δx=2832(n+1)n.\displaystyle\sum_{i=1}^{n} f(x_i) \Delta x = 28 - \frac{32(n + 1)}{n}.

Simplify:

i=1nf(xi)Δx=283232n=432n.\displaystyle\sum_{i=1}^{n} f(x_i) \Delta x = 28 - 32 - \frac{32}{n} = -4 - \frac{32}{n}.


Step 5: Take the limit as nn \to \infty

As nn \to \infty, the term 32n0\frac{32}{n} \to 0. Thus:

limni=1nf(xi)Δx=4\lim_{n \to \infty} \displaystyle\sum_{i=1}^{n} f(x_i) \Delta x = -4


Final Answer:

13(34x)dx=4\int_{-1}^{3} (3 - 4x) \, dx = -4



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)