image
image
image
image
image
image
image
image
image
image

Evaluate the integral: 01r316+r2dr\int_0^1 \dfrac{r^3}{\sqrt{16 + r^2}} \, dr 

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral: int01fracr3sqrt16+r2,drint_0^1 frac{r^3}{sqrt{16 + r^2}} , dr Evaluate the integral: int_0^1 frac{r^3}{sqrt{16 + r^2}} , dr ![](https://doub | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | September 20, 2024

This is the solution to Integral by Parts homework question
Contact me if you need help with Homework, Assignments, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Step-by-Step Solution:

Evaluate the integral: 01r316+r2dr\int_0^1 \frac{r^3}{\sqrt{16 + r^2}} \, dr


Substitute:

Let u=16+r2u = 16 + r^2, simplifying the denominator's square root.

Then, the differential dudu is: du=2rdrdu = 2r \, dr So: rdr=du2r \, dr = \frac{du}{2}

Rewriting the integral:

The limits of integration change when substituting uu:

  • When r=0r = 0, u=16u = 16,
  • When r=1r = 1, u=17u = 17.

Now, rewrite the integral in terms of uu: 1617(u16)udu2\int_{16}^{17} \frac{(u - 16)}{\sqrt{u}} \cdot \frac{du}{2}

Simplifying the expression:

Factor out constants: 121617u16udu\frac{1}{2} \int_{16}^{17} \frac{u - 16}{\sqrt{u}} \, du

Split the integral:

12(1617uudu1616171udu)\frac{1}{2} \left( \int_{16}^{17} \frac{u}{\sqrt{u}} \, du - 16 \int_{16}^{17} \frac{1}{\sqrt{u}} \, du \right) Simplify the powers of uu: 12(1617u1/2du161617u1/2du)\frac{1}{2} \left( \int_{16}^{17} u^{1/2} \, du - 16 \int_{16}^{17} u^{-1/2} \, du \right)

Evaluate each integral:

  • The first integral: u1/2du=23u3/2\int u^{1/2} \, du = \frac{2}{3} u^{3/2}

  • The second integral: u1/2du=2u1/2\int u^{-1/2} \, du = 2u^{1/2}

Substitute back the limits:

  • For the first term: 23(173/2163/2)\frac{2}{3} \left( 17^{3/2} - 16^{3/2} \right)

  • For the second term: 162(171/2161/2)16 \cdot 2 \left( 17^{1/2} - 16^{1/2} \right)

After putting the values back

  • 13(173/264)16(171/24)\frac{1}{3} \left( 17^{3/2} - 64 \right) - 16 \left( 17^{1/2} - 4 \right)

After substituting the values and simplifying the expression, the final result for the integral is:

  • the value of integral = 12831173=0.061242\frac{128-31\sqrt{17}}{3} = 0.061242

Final answer:

12831173 or 0.061242\boxed{\frac{128-31\sqrt{17}}{3} \ or \ 0.061242}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)