image
image
image
image
image
image
image
image
image
image

Evaluate the integral: x3x216dx\int \frac{x^3}{\sqrt{x^2 - 16}} \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral: x3x216dx\int \frac{x^3}{\sqrt{x^2 - 16}} \, dx

Solution:

Neetesh Kumar

Neetesh Kumar | February 5, 2025

Calculus Homework Help

This is the solution to Integral Problem

Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We need to evaluate the integral:

x3x216dx\int \frac{x^3}{\sqrt{x^2 - 16}} \, dx

Step 1: Use Trigonometric Substitution

Since we have a square root expression of the form x2a2\sqrt{x^2 - a^2}, we use the substitution:

x=4secθx = 4\sec \theta

Differentiating both sides:

dx=4secθtanθdθdx = 4\sec \theta \tan \theta \, d\theta

Also, using the identity sec2θ1=tan2θ\sec^2 \theta - 1 = \tan^2 \theta:

x216=16sec2θ16=16(sec2θ1)=16tan2θ=4tanθ\sqrt{x^2 - 16} = \sqrt{16\sec^2 \theta - 16} = \sqrt{16(\sec^2 \theta - 1)} = \sqrt{16\tan^2 \theta} = 4\tan \theta

Step 2: Rewrite the Integral

Substituting x=4secθx = 4\sec \theta into the integral:

(4secθ)3(4secθ)2164secθtanθdθ\int \dfrac{(4\sec \theta)^3}{\sqrt{(4\sec \theta)^2 - 16}} \cdot 4\sec \theta \tan \theta \, d\theta

Simplify the terms:

64sec3θ4tanθ4secθtanθdθ\int \dfrac{64\sec^3 \theta}{4\tan \theta} \cdot 4\sec \theta \tan \theta \, d\theta

Cancel out tanθ\tan \theta:

We get: 64sec4θdθ\int 64\sec^4 \theta \, d\theta

Step 3: Use the Integral of sec4θ\sec^4 \theta

We use the identity:

sec4θ=(sec2θ)2\sec^4 \theta = (\sec^2 \theta)^2

Using the standard integral formula:

sec4θdθ=13tan3θ+tanθ+C\int \sec^4 \theta \, d\theta = \frac{1}{3} \tan^3 \theta + \tan \theta + C

Thus:

64sec4θdθ=64(13tan3θ+tanθ)+C\int 64\sec^4 \theta \, d\theta = 64 \left( \frac{1}{3} \tan^3 \theta + \tan \theta \right) + C

Step 4: Substitute Back θ\theta

Since x=4secθx = 4\sec \theta, we have:

tanθ=x2164\tan \theta = \dfrac{\sqrt{x^2 - 16}}{4}

Substituting back:

643(x2164)3+64x2164+C\dfrac{64}{3} \left(\dfrac{\sqrt{x^2 - 16}}{4} \right)^3 + 64 \cdot \dfrac{\sqrt{x^2 - 16}}{4} + C

Simplify:

643(x216)3/264+16x216+C\dfrac{64}{3} \cdot \dfrac{(x^2 - 16)^{3/2}}{64} + 16\sqrt{x^2 - 16} + C

After solving further:

(x216)323+16x216+C\dfrac{(x^2 - 16)^{\frac{3}{2}}}{3} + 16\sqrt{x^2 - 16} + C


Final Answer:

(x216)323+16x216+C\boxed{\dfrac{(x^2 - 16)^{\frac{3}{2}}}{3} + 16\sqrt{x^2 - 16} + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my YouTube channel for video solutions to similar questions.

Keep Smiling! 😊

Leave a comment

Comments(0)