image
image
image
image
image
image
image
image
image
image

Evaluate the integral: 0π/23sin2(x)cos2dx\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2 \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral: 0π/23sin2(x)cos2dx\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2 \, dx

![Evaluate the integral: 0π/23sin2(x)cos2dx\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2 \, dx

![](https | Doubtlet.com](https://doubt.doubtlet.com/images/20241208-081111-7.2.7.png)

Solution:

Neetesh Kumar

Neetesh Kumar | December 8, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 7.2 Question Number 7
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We aim to evaluate the definite integral 0π/23sin2(x)cos2(x)dx\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2(x) \, dx.

Step 1: Factor out the constant

The constant 33 can be factored out of the integral:

0π/23sin2(x)cos2(x)dx=30π/2sin2(x)cos2(x)dx\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2(x) \, dx = 3 \int_{0}^{\pi/2} \sin^2(x) \cos^2(x) \, dx

Step 2: Use the double-angle identity

To simplify sin2(x)cos2(x)\sin^2(x) \cos^2(x), use the double-angle identity:

sin2(x)cos2(x)=14sin2(2x)\sin^2(x) \cos^2(x) = \frac{1}{4} \sin^2(2x)

Substitute this into the integral:

30π/2sin2(x)cos2(x)dx=30π/214sin2(2x)dx3 \int_{0}^{\pi/2} \sin^2(x) \cos^2(x) \, dx = 3 \int_{0}^{\pi/2} \frac{1}{4} \sin^2(2x) \, dx

Simplify:

30π/2sin2(x)cos2(x)dx=340π/2sin2(2x)dx3 \int_{0}^{\pi/2} \sin^2(x) \cos^2(x) \, dx = \frac{3}{4} \int_{0}^{\pi/2} \sin^2(2x) \, dx

Step 3: Use the power-reduction formula

To simplify sin2(2x)\sin^2(2x), use the power-reduction identity:

sin2(2x)=1cos(4x)2\sin^2(2x) = \frac{1 - \cos(4x)}{2}

Substitute this into the integral:

340π/2sin2(2x)dx=340π/21cos(4x)2dx\frac{3}{4} \int_{0}^{\pi/2} \sin^2(2x) \, dx = \frac{3}{4} \int_{0}^{\pi/2} \frac{1 - \cos(4x)}{2} \, dx

Simplify:

340π/2sin2(2x)dx=380π/2(1cos(4x))dx\frac{3}{4} \int_{0}^{\pi/2} \sin^2(2x) \, dx = \frac{3}{8} \int_{0}^{\pi/2} \left( 1 - \cos(4x) \right) \, dx

Step 4: Separate the integral

Distribute the integral:

380π/2(1cos(4x))dx=38(0π/21dx0π/2cos(4x)dx)\frac{3}{8} \int_{0}^{\pi/2} \left( 1 - \cos(4x) \right) \, dx = \frac{3}{8} \left( \int_{0}^{\pi/2} 1 \, dx - \int_{0}^{\pi/2} \cos(4x) \, dx \right)

Step 5: Evaluate each term

  1. For 0π/21dx\int_{0}^{\pi/2} 1 \, dx:

    0π/21dx=[x]0π/2=π/20=π/2\int_{0}^{\pi/2} 1 \, dx = \left[ x \right]_{0}^{\pi/2} = \pi/2 - 0 = \pi/2

  2. For 0π/2cos(4x)dx\int_{0}^{\pi/2} \cos(4x) \, dx:

    The integral of cos(4x)\cos(4x) is sin(4x)4\frac{\sin(4x)}{4}.

Evaluate:

0π/2cos(4x)dx=[sin(4x)4]0π/2=sin(2π)4sin(0)4=00=0\int_{0}^{\pi/2} \cos(4x) \, dx = \left[ \frac{\sin(4x)}{4} \right]_{0}^{\pi/2} = \frac{\sin(2\pi)}{4} - \frac{\sin(0)}{4} = 0 - 0 = 0

Step 6: Combine results

Substitute back into the expression:

38(0π/21dx0π/2cos(4x)dx)=38(π/20)=38π2=3π16\frac{3}{8} \left( \int_{0}^{\pi/2} 1 \, dx - \int_{0}^{\pi/2} \cos(4x) \, dx \right) = \frac{3}{8} \left( \pi/2 - 0 \right) = \frac{3}{8} \cdot \frac{\pi}{2} = \frac{3\pi}{16}

Final Answer:

0π/23sin2(x)cos2(x)dx=3π16\int_{0}^{\pi/2} 3 \sin^2(x) \cos^2(x) \, dx = \boxed{\frac{3\pi}{16}}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)