image
image
image
image
image
image
image
image
image
image

Evaluate the integral: sin1(4x)dx\int \sin^{-1}(4x) \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral: sin1(4x)dx\int \sin^{-1}(4x) \, dx

![Evaluate the integral: sin1(4x)dx\int \sin^{-1}(4x) \, dx

![](https://doubt.doubtl | Doubtlet.com](https://doubt.doubtlet.com/images/20241111-103300-3.11.png)

Solution:

Neetesh Kumar

Neetesh Kumar | November 11, 2024

Calculus Homework Help

This is the solution to DHW Calculus
Assignment: 3 Question Number 11
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We need to evaluate the integral of sin1(4x)\sin^{-1}(4x). To do this, we use integration by parts.

Step 1: Choose uu and dvdv

We start by setting:

  • u=sin1(4x)so thatdu=41(4x)2dxu = \sin^{-1}(4x) \quad \text{so that} \quad du = \frac{4}{\sqrt{1-(4x)^2}} \, dx
  • dv=dxso thatv=xdv = dx \quad \text{so that} \quad v = x

Step 2: Apply the integration by parts formula

The integration by parts formula is:

udv=uvvdu\int u \, dv = uv - \int v \, du

Substitute the values of uu, dudu, vv, and dvdv into the formula:

sin1(4x)dx=xsin1(4x)4x1(4x)2dx\int \sin^{-1}(4x) \, dx = x \sin^{-1}(4x) - \int \frac{4x}{\sqrt{1 - (4x)^2}} \, dx

Step 3: Solve the remaining integral

To solve the remaining integral 4x1(4x)2dx\int \frac{4x}{\sqrt{1 - (4x)^2}} \, dx, we use the substitution:

  • Let u=1(4x)2u = 1 - (4x)^2, so that du=8xdxdu = -8x \, dx

Substituting this into the integral:

4x1(4x)2dx=12duu\int \frac{4x}{\sqrt{1 - (4x)^2}} \, dx = -\frac{1}{2} \int \frac{du}{\sqrt{u}}

This is a standard integral, and its solution is:

122u=u=1(4x)2-\frac{1}{2} \cdot 2\sqrt{u} = -\sqrt{u} = -\sqrt{1 - (4x)^2}

Step 4: Substitute the result back

Now substitute back into the expression for the original integral:

sin1(4x)dx=xsin1(4x)+1(4x)2+C\int \sin^{-1}(4x) \, dx = x \sin^{-1}(4x) + \sqrt{1 - (4x)^2} + C

Where CC is the constant of integration.

Final Answer:

The value of the integral is:

xsin1(4x)+1(4x)2+C\boxed{x \sin^{-1}(4x) + \sqrt{1 - (4x)^2} + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)