image
image
image
image
image
image
image
image
image
image

Evaluate the integral. (Remember the constant of integration.) 5sin(8x)cos(5x)dx\int 5 \sin(8x) \cos(5x) \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral. (remember the constant of integration.) 5sin(8x)cos(5x)dx\int 5 \sin(8x) \cos(5x) \, dx

Evaluate the integral. (remember the constant of integration.)
$\int 5 \sin(8x) | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 7, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 7.2 Question Number 4
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To evaluate the integral 5sin(8x)cos(5x)dx\int 5 \sin(8x) \cos(5x) \, dx, we proceed step by step.

Step 1: Factor out the constant

The constant 55 can be factored out of the integral:

5sin(8x)cos(5x)dx=5sin(8x)cos(5x)dx\int 5 \sin(8x) \cos(5x) \, dx = 5 \int \sin(8x) \cos(5x) \, dx

Step 2: Use the product-to-sum identities

Recall the product-to-sum identity:

sin(A)cos(B)=12[sin(A+B)+sin(AB)]\sin(A) \cos(B) = \frac{1}{2} \left[ \sin(A + B) + \sin(A - B) \right]

Here, A=8xA = 8x and B=5xB = 5x. Applying the identity:

sin(8x)cos(5x)=12[sin(13x)+sin(3x)]\sin(8x) \cos(5x) = \frac{1}{2} \left[ \sin(13x) + \sin(3x) \right]

Step 3: Rewrite the integral

Substitute back into the integral:

5sin(8x)cos(5x)dx=512[sin(13x)+sin(3x)]dx5 \int \sin(8x) \cos(5x) \, dx = 5 \int \frac{1}{2} \left[ \sin(13x) + \sin(3x) \right] \, dx

Simplify:

5sin(8x)cos(5x)dx=52sin(13x)dx+52sin(3x)dx5 \int \sin(8x) \cos(5x) \, dx = \frac{5}{2} \int \sin(13x) \, dx + \frac{5}{2} \int \sin(3x) \, dx

Step 4: Integrate each term

The integral of sin(kx)\sin(kx) is:

sin(kx)dx=1kcos(kx)+C\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C

For sin(13x)dx\int \sin(13x) \, dx:

sin(13x)dx=113cos(13x)\int \sin(13x) \, dx = -\frac{1}{13} \cos(13x)

For sin(3x)dx\int \sin(3x) \, dx:

sin(3x)dx=13cos(3x)\int \sin(3x) \, dx = -\frac{1}{3} \cos(3x)

Step 5: Combine results

Substitute these back into the expression:

52sin(13x)dx+52sin(3x)dx=52(113cos(13x))+52(13cos(3x))\frac{5}{2} \int \sin(13x) \, dx + \frac{5}{2} \int \sin(3x) \, dx = \frac{5}{2} \left(-\frac{1}{13} \cos(13x)\right) + \frac{5}{2} \left(-\frac{1}{3} \cos(3x)\right)

Simplify:

52sin(13x)dx+52sin(3x)dx=526cos(13x)56cos(3x)\frac{5}{2} \int \sin(13x) \, dx + \frac{5}{2} \int \sin(3x) \, dx = -\frac{5}{26} \cos(13x) - \frac{5}{6} \cos(3x)

Step 6: Add the constant of integration

Finally, include the constant of integration CC:

5sin(8x)cos(5x)dx=526cos(13x)56cos(3x)+C\int 5 \sin(8x) \cos(5x) \, dx = -\frac{5}{26} \cos(13x) - \frac{5}{6} \cos(3x) + C

Final Answer:

5sin(8x)cos(5x)dx=526cos(13x)56cos(3x)+C\int 5 \sin(8x) \cos(5x) \, dx = \boxed{-\frac{5}{26} \cos(13x) - \frac{5}{6} \cos(3x) + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)