image
image
image
image
image
image
image
image
image
image

Evaluate the integral. (Remember the constant of integration.) 7tan3(x)sec(x)dx\int 7 \tan^3(x) \sec(x) \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral. (remember the constant of integration.) 7tan3(x)sec(x)dx\int 7 \tan^3(x) \sec(x) \, dx

Evaluate the integral. (remember the constant of integration.)
$\int 7 \tan^3(x | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 7, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 7.2 Question Number 3
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We are tasked with solving the integral: 7tan3(x)sec(x)dx\int 7 \tan^3(x) \sec(x) \, dx

Step 1: Simplify the powers of tan(x)\tan(x)

We rewrite tan3(x)\tan^3(x) as tan2(x)tan(x)\tan^2(x) \tan(x):

7tan3(x)sec(x)dx=7tan2(x)tan(x)sec(x)dx\int 7 \tan^3(x) \sec(x) \, dx = \int 7 \tan^2(x) \tan(x) \sec(x) \, dx

Using the trigonometric identity tan2(x)=sec2(x)1\tan^2(x) = \sec^2(x) - 1, substitute:

7tan3(x)sec(x)dx=7(sec2(x)1)tan(x)sec(x)dx\int 7 \tan^3(x) \sec(x) \, dx = \int 7 (\sec^2(x) - 1) \tan(x) \sec(x) \, dx

Step 2: Substitution

Let u=sec(x)u = \sec(x). Then:

dudx=sec(x)tan(x)    du=sec(x)tan(x)dx\frac{du}{dx} = \sec(x) \tan(x) \implies du = \sec(x) \tan(x) \, dx

Substitute u=sec(x)u = \sec(x) and du=sec(x)tan(x)dxdu = \sec(x) \tan(x) \, dx into the integral:

7(sec2(x)1)tan(x)sec(x)dx=7(u21)du\int 7 (\sec^2(x) - 1) \tan(x) \sec(x) \, dx = \int 7 (u^2 - 1) \, du

Step 3: Solve the integral

Expand and solve the integral:

7(u21)du=7u2du71du\int 7 (u^2 - 1) \, du = 7 \int u^2 \, du - 7 \int 1 \, du

  1. Solve 7u2du7 \int u^2 \, du: u2du=u33    7u2du=7u33\int u^2 \, du = \frac{u^3}{3} \implies 7 \int u^2 \, du = \frac{7 u^3}{3}

  2. Solve 71du-7 \int 1 \, du: 1du=u    71du=7u\int 1 \, du = u \implies -7 \int 1 \, du = -7 u

Combine the results: 7(u21)du=7u337u+C\int 7 (u^2 - 1) \, du = \frac{7 u^3}{3} - 7 u + C

Step 4: Substitute back u=sec(x)u = \sec(x)

Replace uu with sec(x)\sec(x):

7u337u+C=7sec3(x)37sec(x)+C\frac{7 u^3}{3} - 7 u + C = \frac{7 \sec^3(x)}{3} - 7 \sec(x) + C

Final Answer

7tan3(x)sec(x)dx=7sec3(x)37sec(x)+C\int 7 \tan^3(x) \sec(x) \, dx = \boxed{\frac{7 \sec^3(x)}{3} - 7 \sec(x) + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)