image
image
image
image
image
image
image
image
image
image

Evaluate the integral (Remember the constant of integration): 7510xx2dx\int \sqrt{75 - 10x - x^2} \, dx

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the integral (remember the constant of integration): 7510xx2dx\int \sqrt{75 - 10x - x^2} \, dx

Evaluate the integral (remember the constant of integration):
$\int \sqrt{75 -  | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 10, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 7.5 Question Number 6
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To evaluate 7510xx2dx\int \sqrt{75 - 10x - x^2} \, dx, we will simplify the expression inside the square root and use a trigonometric substitution.

Step 1: Simplify the quadratic expression

The quadratic inside the square root is 7510xx275 - 10x - x^2.

Rewrite it in standard form:

x210x+75-x^2 - 10x + 75

Factor out 1-1 to make the leading term positive:

(x2+10x75)- (x^2 + 10x - 75)

Complete the square for x2+10x75x^2 + 10x - 75:

  1. Take half the coefficient of xx, square it: (102)2=25\left(\frac{10}{2}\right)^2 = 25.

  2. Add and subtract 2525 inside the parentheses:

x2+10x75=(x2+10x+25)2575=(x+5)2100x^2 + 10x - 75 = (x^2 + 10x + 25) - 25 - 75 = (x + 5)^2 - 100

So the quadratic becomes:

7510xx2=((x+5)2100)=100(x+5)275 - 10x - x^2 = -\left((x + 5)^2 - 100\right) = 100 - (x + 5)^2

Thus, the integral is:

7510xx2dx=100(x+5)2dx\int \sqrt{75 - 10x - x^2} \, dx = \int \sqrt{100 - (x + 5)^2} \, dx

Step 2: Substitution for the circle

The expression 100(x+5)2\sqrt{100 - (x + 5)^2} represents a semicircle with radius 1010.

Use the substitution:

x+5=10sin(θ),dx=10cos(θ)dθx + 5 = 10 \sin(\theta), \quad dx = 10 \cos(\theta) \, d\theta

Substitute into the integral:

100(x+5)2dx=100100sin2(θ)10cos(θ)dθ\int \sqrt{100 - (x + 5)^2} \, dx = \int \sqrt{100 - 100 \sin^2(\theta)} \cdot 10 \cos(\theta) \, d\theta

Simplify the square root using the Pythagorean identity 1sin2(θ)=cos2(θ)1 - \sin^2(\theta) = \cos^2(\theta):

100100sin2(θ)=100cos2(θ)=10cos(θ)\sqrt{100 - 100 \sin^2(\theta)} = \sqrt{100 \cos^2(\theta)} = 10 \cos(\theta)

The integral becomes:

10cos(θ)10cos(θ)dθ=100cos2(θ)dθ\int 10 \cos(\theta) \cdot 10 \cos(\theta) \, d\theta = 100 \int \cos^2(\theta) \, d\theta

Step 3: Simplify cos2(θ)\cos^2(\theta)

Use the half-angle identity:

cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}

Substitute into the integral:

100cos2(θ)dθ=1001+cos(2θ)2dθ=50(1+cos(2θ))dθ100 \int \cos^2(\theta) \, d\theta = 100 \int \frac{1 + \cos(2\theta)}{2} \, d\theta = 50 \int (1 + \cos(2\theta)) \, d\theta

Split the integral:

50(1+cos(2θ))dθ=501dθ+50cos(2θ)dθ50 \int (1 + \cos(2\theta)) \, d\theta = 50 \int 1 \, d\theta + 50 \int \cos(2\theta) \, d\theta

  1. For 1dθ\int 1 \, d\theta:

1dθ=θ\int 1 \, d\theta = \theta

  1. For cos(2θ)dθ\int \cos(2\theta) \, d\theta:

cos(2θ)dθ=sin(2θ)2\int \cos(2\theta) \, d\theta = \frac{\sin(2\theta)}{2}

Combine the results:

50(1+cos(2θ))dθ=50(θ+sin(2θ)2)50 \int (1 + \cos(2\theta)) \, d\theta = 50 \left(\theta + \frac{\sin(2\theta)}{2}\right)

Step 4: Back-substitute θ\theta

Recall that x+5=10sin(θ)x + 5 = 10 \sin(\theta), so:

sin(θ)=x+510,θ=arcsin(x+510)\sin(\theta) = \frac{x + 5}{10}, \quad \theta = \arcsin\left(\frac{x + 5}{10}\right)

Also, use the double-angle formula for sin(2θ)\sin(2\theta):

sin(2θ)=2sin(θ)cos(θ)\sin(2\theta) = 2 \sin(\theta) \cos(\theta)

From the substitution, cos(θ)=1sin2(θ)=1(x+510)2\cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{x + 5}{10}\right)^2}.

Substitute back into the result:

50θ+25sin(2θ)=50arcsin(x+510)+252x+5101(x+510)250 \theta + 25 \sin(2\theta) = 50 \arcsin\left(\frac{x + 5}{10}\right) + 25 \cdot 2 \cdot \frac{x + 5}{10} \cdot \sqrt{1 - \left(\frac{x + 5}{10}\right)^2}

Simplify:

50arcsin(x+510)+5(x+5)1(x+510)250 \arcsin\left(\frac{x + 5}{10}\right) + 5(x + 5) \sqrt{1 - \left(\frac{x + 5}{10}\right)^2}

Final Answer:

7510xx2dx=50arcsin(x+510)+5(x+5)1(x+510)2+C\int \sqrt{75 - 10x - x^2} \, dx = \boxed{50 \arcsin\left(\frac{x + 5}{10}\right) + 5(x + 5) \sqrt{1 - \left(\frac{x + 5}{10}\right)^2} + C}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)