image
image
image
image
image
image
image
image
image
image

Evaluate the surface integral SFdS\iint_{S} \mathbf{F} \cdot d\mathbf{S} for the given vector field F\mathbf{F} and the oriented surface SS. In other words, find the flux of F\mathbf{F} across SS. For closed surfaces, use the positive (outward) orientation. F(x,y,z)=xyi+12x2j+yzk\mathbf{F}(x, y, z) = xy \mathbf{i} + 12x^2 \mathbf{j} + yz \mathbf{k} SS is the surface z=xeyz = xe^y, 0x10 \leq x \leq 1, 0y40 \leq y \leq 4, with upward orientation.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the surface integral sfds\iint_{s} \mathbf{f} \cdot d\mathbf{s} for the given vector field f\mathbf{f} and the oriented surface ss. in other words, find the flux of f\mathbf{f} across ss. for closed surfaces, use the positive (outward) orientation. f(x,y,z)=xyi+12x2j+yzk\mathbf{f}(x, y, z) = xy \mathbf{i} + 12x^2 \mathbf{j} + yz \mathbf{k} ss is the surface z=xeyz = xe^y, 0x10 \leq x \leq 1, 0y40 \leq y \leq 4, with upward orientation.

Evaluate the surface integral \iint_{s} \mathbf{f} \cdot d\mathbf{s} for the g | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 13, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 16.7 Question Number 14
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To evaluate the flux of the vector field F\mathbf{F} across the surface SS, we use the surface integral SFdS\iint_{S} \mathbf{F} \cdot d\mathbf{S}.

Since SS is not a closed surface but has an upward orientation, we’ll calculate dSd\mathbf{S} in terms of the surface parameters.

Step 1: Parametrize the Surface

The surface SS is given by z=xeyz = xe^y. We can parametrize it as:

r(x,y)=xi+yj+xeyk\mathbf{r}(x, y) = x \mathbf{i} + y \mathbf{j} + xe^y \mathbf{k}

where 0x10 \leq x \leq 1 and 0y40 \leq y \leq 4.

Step 2: Calculate dSd\mathbf{S}

To find dSd\mathbf{S}, we need rx×rydxdy\mathbf{r}_x \times \mathbf{r}_y \, dx \, dy.

  1. Compute rx=rx=i+eyk\mathbf{r}_x = \frac{\partial \mathbf{r}}{\partial x} = \mathbf{i} + e^y \mathbf{k}
  2. Compute ry=ry=j+xeyk\mathbf{r}_y = \frac{\partial \mathbf{r}}{\partial y} = \mathbf{j} + x e^y \mathbf{k}

Now, find the cross product rx×ry\mathbf{r}_x \times \mathbf{r}_y:

rx×ry=ijk10ey01xey\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & e^y \\ 0 & 1 & x e^y \end{vmatrix}

Expanding this determinant:

rx×ry=(0ey)i(1xey0)j+(110)k\mathbf{r}_x \times \mathbf{r}_y = (0 - e^y) \mathbf{i} - (1 \cdot x e^y - 0) \mathbf{j} + (1 \cdot 1 - 0) \mathbf{k}

Simplifying, we get:

rx×ry=eyixeyj+k\mathbf{r}_x \times \mathbf{r}_y = -e^y \mathbf{i} - x e^y \mathbf{j} + \mathbf{k}

Thus, dS=rx×rydxdy=(eyixeyj+k)dxdyd\mathbf{S} = \mathbf{r}_x \times \mathbf{r}_y \, dx \, dy = (-e^y \mathbf{i} - x e^y \mathbf{j} + \mathbf{k}) \, dx \, dy

Step 3: Compute FdS\mathbf{F} \cdot d\mathbf{S}

The vector field F(x,y,z)=xyi+12x2j+yzk\mathbf{F}(x, y, z) = xy \mathbf{i} + 12x^2 \mathbf{j} + yz \mathbf{k}. On the surface SS, we substitute z=xeyz = xe^y, so F\mathbf{F} on SS is:

F(x,y,xey)=xyi+12x2j+yxeyk\mathbf{F}(x, y, xe^y) = xy \mathbf{i} + 12x^2 \mathbf{j} + yxe^y \mathbf{k}

Now, calculate the dot product FdS\mathbf{F} \cdot d\mathbf{S}:

FdS=(xyi+12x2j+yxeyk)(eyixeyj+k)\mathbf{F} \cdot d\mathbf{S} = (xy \mathbf{i} + 12x^2 \mathbf{j} + yxe^y \mathbf{k}) \cdot (-e^y \mathbf{i} - x e^y \mathbf{j} + \mathbf{k})

Expanding this dot product:

FdS=xy(ey)+12x2(xey)+yxey(1)\mathbf{F} \cdot d\mathbf{S} = xy(-e^y) + 12x^2(-x e^y) + yxe^y(1)

Simplify each term:

  1. xy(ey)=xyeyxy(-e^y) = -xye^y
  2. 12x2(xey)=12x3ey12x^2(-x e^y) = -12x^3 e^y
  3. yxey(1)=yxeyyxe^y(1) = yxe^y

Combining these, we get:

FdS=xyey12x3ey+yxey\mathbf{F} \cdot d\mathbf{S} = -xye^y - 12x^3 e^y + yxe^y

Simplify further:

FdS=(xyey+yxey)12x3ey\mathbf{F} \cdot d\mathbf{S} = (-xye^y + yxe^y) - 12x^3 e^y

FdS=12x3ey\mathbf{F} \cdot d\mathbf{S} = -12x^3 e^y

Step 4: Set Up and Evaluate the Integral

Now we integrate over the region 0x10 \leq x \leq 1 and 0y40 \leq y \leq 4:

SFdS=010412x3eydydx\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{1} \int_{0}^{4} -12x^3 e^y \, dy \, dx

Separate the integrals:

=1201x3dx04eydy= -12 \int_{0}^{1} x^3 \, dx \int_{0}^{4} e^y \, dy

Evaluate each integral separately.

  1. 01x3dx=[x44]01=14\int_{0}^{1} x^3 \, dx = \left[ \frac{x^4}{4} \right]_{0}^{1} = \frac{1}{4}
  2. 04eydy=[ey]04=e41\int_{0}^{4} e^y \, dy = \left[ e^y \right]_{0}^{4} = e^4 - 1

Combine results:

SFdS=1214(e41)\iint_{S} \mathbf{F} \cdot d\mathbf{S} = -12 \cdot \frac{1}{4} \cdot (e^4 - 1)

SFdS=3(1e4)\iint_{S} \mathbf{F} \cdot d\mathbf{S} = 3(1 - e^4)

Final Answer

The flux of F\mathbf{F} across SS is 3(1e4)\boxed{3(1 - e^4)}.



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)