Neetesh Kumar | November 10, 2024
Calculus Homework Help
This is the solution to Math 1D
Assignment: 16.7 Question Number 3
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.
Get Homework Help
Step-by-step solution:
To evaluate the surface integral ∬ S y z d S \iint_S yz \, dS ∬ S yz d S , we need to parameterize the surface S S S and express d S dS d S in terms of d x dx d x and d y dy d y .
Step 1: Find the Equation of the Plane
The equation of the plane is given by:
x + y + z = 4 x + y + z = 4 x + y + z = 4
Solving for z z z in terms of x x x and y y y , we get:
z = 4 − x − y z = 4 - x - y z = 4 − x − y
Step 2: Set Up the Surface Element d S dS d S
The surface element d S dS d S for a plane z = f ( x , y ) z = f(x, y) z = f ( x , y ) is given by:
d S = ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 + 1 d x d y dS = \sqrt{\left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2 + 1} \, dx \, dy d S = ( ∂ x ∂ z ) 2 + ( ∂ y ∂ z ) 2 + 1 d x d y
Calculate ∂ z ∂ x \frac{\partial z}{\partial x} ∂ x ∂ z and ∂ z ∂ y \frac{\partial z}{\partial y} ∂ y ∂ z :
∂ z ∂ x = − 1 \frac{\partial z}{\partial x} = -1 ∂ x ∂ z = − 1
∂ z ∂ y = − 1 \frac{\partial z}{\partial y} = -1 ∂ y ∂ z = − 1
Thus,
d S = ( − 1 ) 2 + ( − 1 ) 2 + 1 d x d y = 3 d x d y dS = \sqrt{(-1)^2 + (-1)^2 + 1} \, dx \, dy = \sqrt{3} \, dx \, dy d S = ( − 1 ) 2 + ( − 1 ) 2 + 1 d x d y = 3 d x d y
Step 3: Set Up the Integral
Now we can express the integral as:
∬ S y z d S = ∬ D y ( 4 − x − y ) 3 d x d y \iint_S yz \, dS = \iint_D y(4 - x - y) \sqrt{3} \, dx \, dy ∬ S yz d S = ∬ D y ( 4 − x − y ) 3 d x d y
where D D D is the projection of S S S onto the x y xy x y -plane, which is a triangular region with vertices at ( 4 , 0 ) (4, 0) ( 4 , 0 ) , ( 0 , 4 ) (0, 4) ( 0 , 4 ) , and ( 0 , 0 ) (0, 0) ( 0 , 0 ) .
Step 4: Set Up the Limits of Integration
For the triangular region D D D in the x y xy x y -plane:
x x x ranges from 0 0 0 to 4 4 4 .
For a given x x x , y y y ranges from 0 0 0 to 4 − x 4 - x 4 − x .
Thus, the integral becomes:
∬ S y z d S = 3 ∫ 0 4 ∫ 0 4 − x y ( 4 − x − y ) d y d x \iint_S yz \, dS = \sqrt{3} \int_0^4 \int_0^{4 - x} y(4 - x - y) \, dy \, dx ∬ S yz d S = 3 ∫ 0 4 ∫ 0 4 − x y ( 4 − x − y ) d y d x
Step 5: Evaluate the Integral
Integrate with respect to y y y :
∫ 0 4 − x y ( 4 − x − y ) d y = ∫ 0 4 − x ( 4 y − x y − y 2 ) d y \int_0^{4 - x} y(4 - x - y) \, dy = \int_0^{4 - x} (4y - xy - y^2) \, dy ∫ 0 4 − x y ( 4 − x − y ) d y = ∫ 0 4 − x ( 4 y − x y − y 2 ) d y
Break it down term by term:
∫ 0 4 − x 4 y d y = 4 ⋅ ( 4 − x ) 2 2 = 2 ( 4 − x ) 2 \int_0^{4 - x} 4y \, dy = 4 \cdot \frac{(4 - x)^2}{2} = 2(4 - x)^2 ∫ 0 4 − x 4 y d y = 4 ⋅ 2 ( 4 − x ) 2 = 2 ( 4 − x ) 2
∫ 0 4 − x x y d y = x ⋅ ( 4 − x ) 2 2 = x ( 4 − x ) 2 2 \int_0^{4 - x} xy \, dy = x \cdot \frac{(4 - x)^2}{2} = \frac{x(4 - x)^2}{2} ∫ 0 4 − x x y d y = x ⋅ 2 ( 4 − x ) 2 = 2 x ( 4 − x ) 2
∫ 0 4 − x y 2 d y = ( 4 − x ) 3 3 \int_0^{4 - x} y^2 \, dy = \frac{(4 - x)^3}{3} ∫ 0 4 − x y 2 d y = 3 ( 4 − x ) 3
Putting these together:
∫ 0 4 − x y ( 4 − x − y ) d y = 2 ( 4 − x ) 2 − x ( 4 − x ) 2 2 − ( 4 − x ) 3 3 \int_0^{4 - x} y(4 - x - y) \, dy = 2(4 - x)^2 - \frac{x(4 - x)^2}{2} - \frac{(4 - x)^3}{3} ∫ 0 4 − x y ( 4 − x − y ) d y = 2 ( 4 − x ) 2 − 2 x ( 4 − x ) 2 − 3 ( 4 − x ) 3
Integrate with respect to x x x :
Substitute back into the outer integral and evaluate from 0 0 0 to 4 4 4 :
∬ S y z d S = 3 ∫ 0 4 ( 2 ( 4 − x ) 2 − x ( 4 − x ) 2 2 − ( 4 − x ) 3 3 ) d x = 32 3 \iint_S yz \, dS = \sqrt{3} \int_0^4 \left( 2(4 - x)^2 - \frac{x(4 - x)^2}{2} - \frac{(4 - x)^3}{3} \right) dx = \dfrac{32}{\sqrt{3}} ∬ S yz d S = 3 ∫ 0 4 ( 2 ( 4 − x ) 2 − 2 x ( 4 − x ) 2 − 3 ( 4 − x ) 3 ) d x = 3 32
Final Answer:
∬ S y z d S = 32 3 \iint_S yz \, dS = \boxed{\dfrac{32}{\sqrt{3}}} ∬ S yz d S = 3 32
Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my
Youtube channel for video solutions to similar questions.
Keep Smiling :-)
Leave a comment