image
image
image
image
image
image
image
image
image
image

Evaluate the surface integral SyzdS\iint_S yz \, dS where SS is the part of the plane x+y+z=4x + y + z = 4 that lies in the first octant.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Evaluate the surface integral syzds\iint_s yz \, ds where ss is the part of the plane x+y+z=4x + y + z = 4 that lies in the first octant.

Evaluate the surface integral  \iint_s yz \, ds where s is the part of the p | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 10, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 16.7 Question Number 3
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To evaluate the surface integral SyzdS\iint_S yz \, dS, we need to parameterize the surface SS and express dSdS in terms of dxdx and dydy.

Step 1: Find the Equation of the Plane

The equation of the plane is given by: x+y+z=4x + y + z = 4 Solving for zz in terms of xx and yy, we get: z=4xyz = 4 - x - y

Step 2: Set Up the Surface Element dSdS

The surface element dSdS for a plane z=f(x,y)z = f(x, y) is given by: dS=(zx)2+(zy)2+1dxdydS = \sqrt{\left( \frac{\partial z}{\partial x} \right)^2 + \left( \frac{\partial z}{\partial y} \right)^2 + 1} \, dx \, dy

Calculate zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y}:

  1. zx=1\frac{\partial z}{\partial x} = -1
  2. zy=1\frac{\partial z}{\partial y} = -1

Thus, dS=(1)2+(1)2+1dxdy=3dxdydS = \sqrt{(-1)^2 + (-1)^2 + 1} \, dx \, dy = \sqrt{3} \, dx \, dy

Step 3: Set Up the Integral

Now we can express the integral as: SyzdS=Dy(4xy)3dxdy\iint_S yz \, dS = \iint_D y(4 - x - y) \sqrt{3} \, dx \, dy

where DD is the projection of SS onto the xyxy-plane, which is a triangular region with vertices at (4,0)(4, 0), (0,4)(0, 4), and (0,0)(0, 0).

Step 4: Set Up the Limits of Integration

For the triangular region DD in the xyxy-plane:

  • xx ranges from 00 to 44.
  • For a given xx, yy ranges from 00 to 4x4 - x.

Thus, the integral becomes: SyzdS=30404xy(4xy)dydx\iint_S yz \, dS = \sqrt{3} \int_0^4 \int_0^{4 - x} y(4 - x - y) \, dy \, dx

Step 5: Evaluate the Integral

  1. Integrate with respect to yy: 04xy(4xy)dy=04x(4yxyy2)dy\int_0^{4 - x} y(4 - x - y) \, dy = \int_0^{4 - x} (4y - xy - y^2) \, dy

    Break it down term by term:

    • 04x4ydy=4(4x)22=2(4x)2\int_0^{4 - x} 4y \, dy = 4 \cdot \frac{(4 - x)^2}{2} = 2(4 - x)^2
    • 04xxydy=x(4x)22=x(4x)22\int_0^{4 - x} xy \, dy = x \cdot \frac{(4 - x)^2}{2} = \frac{x(4 - x)^2}{2}
    • 04xy2dy=(4x)33\int_0^{4 - x} y^2 \, dy = \frac{(4 - x)^3}{3}

    Putting these together: 04xy(4xy)dy=2(4x)2x(4x)22(4x)33\int_0^{4 - x} y(4 - x - y) \, dy = 2(4 - x)^2 - \frac{x(4 - x)^2}{2} - \frac{(4 - x)^3}{3}

  2. Integrate with respect to xx: Substitute back into the outer integral and evaluate from 00 to 44:

    SyzdS=304(2(4x)2x(4x)22(4x)33)dx=323\iint_S yz \, dS = \sqrt{3} \int_0^4 \left( 2(4 - x)^2 - \frac{x(4 - x)^2}{2} - \frac{(4 - x)^3}{3} \right) dx = \dfrac{32}{\sqrt{3}}


Final Answer:

SyzdS=323\iint_S yz \, dS = \boxed{\dfrac{32}{\sqrt{3}}}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)