image
image
image
image
image
image
image
image
image
image

Find the area of the region enclosed by one loop of the curve: r=4+8sin(θ)r = 4 + 8 \sin(\theta) (inner loop)

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the area of the region enclosed by one loop of the curve: r=4+8sin(θ)r = 4 + 8 \sin(\theta) (inner loop)

Find the area of the region enclosed by one loop of the curve:
$r = 4 + 8 \sin( | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 1, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.4 Question Number 6
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To calculate the area enclosed by one loop of the given polar curve, we use the formula for the area in polar coordinates:

A=12θ1θ2r2dθA = \frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 \, d\theta

Here, r=4+8sin(θ)r = 4 + 8\sin(\theta).

Since we are focusing on the inner loop, we need to determine the limits of integration θ1\theta_1 and θ2\theta_2 that correspond to the loop.

Step 1: Identify the limits of integration for the inner loop:

For an inner loop in a polar curve, the loop corresponds to the portion where r=0r = 0.

Setting r=0r = 0:

4+8sin(θ)=04 + 8\sin(\theta) = 0

sin(θ)=12\sin(\theta) = -\frac{1}{2}

The solutions for sin(θ)=12\sin(\theta) = -\frac{1}{2} in the interval [0,2π][0, 2\pi] are:

θ=7π6\theta = \frac{7\pi}{6} and θ=11π6\theta = \frac{11\pi}{6}.

Thus, the inner loop occurs as θ\theta varies from 7π6\frac{7\pi}{6} to 11π6\frac{11\pi}{6}.

Step 2: Set up the integral for the area:

The area of the inner loop is:

A=127π611π6(4+8sin(θ))2dθA = \frac{1}{2} \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} \left(4 + 8\sin(\theta)\right)^2 \, d\theta

Step 3: Expand r2r^2:

Expand (4+8sin(θ))2\left(4 + 8\sin(\theta)\right)^2:

(4+8sin(θ))2=16+64sin(θ)+64sin2(θ)\left(4 + 8\sin(\theta)\right)^2 = 16 + 64\sin(\theta) + 64\sin^2(\theta)

So, the integral becomes:

A=127π611π6(16+64sin(θ)+64sin2(θ))dθA = \frac{1}{2} \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} \left(16 + 64\sin(\theta) + 64\sin^2(\theta)\right) \, d\theta

Step 4: Simplify and compute the integral:

Split the integral into three parts:

A=12[7π611π616dθ+7π611π664sin(θ)dθ+7π611π664sin2(θ)dθ]A = \frac{1}{2} \left[ \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 16 \, d\theta + \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin(\theta) \, d\theta + \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin^2(\theta) \, d\theta \right]

First Term:

7π611π616dθ=16(11π67π6)=164π6=64π6=32π3\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 16 \, d\theta = 16 \cdot \left(\frac{11\pi}{6} - \frac{7\pi}{6}\right) = 16 \cdot \frac{4\pi}{6} = \frac{64\pi}{6} = \frac{32\pi}{3}

Second Term:

7π611π664sin(θ)dθ\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin(\theta) \, d\theta

The integral of 64sin(θ)64\sin(\theta) over the interval [7π6,11π6][\frac{7\pi}{6}, \frac{11\pi}{6}] is nonzero. Compute:

7π611π664sin(θ)dθ=64[cos(θ)]7π611π6\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin(\theta) \, d\theta = 64 \cdot \left[-\cos(\theta)\right]_{\frac{7\pi}{6}}^{\frac{11\pi}{6}}

Evaluate cos(θ)-\cos(\theta) at the limits:

cos(11π6)=(32),cos(7π6)=(32)-\cos\left(\frac{11\pi}{6}\right) = -\left(\frac{\sqrt{3}}{2}\right), \quad -\cos\left(\frac{7\pi}{6}\right) = -\left(-\frac{\sqrt{3}}{2}\right)

So:

7π611π664sin(θ)dθ=64(32+32)=643\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin(\theta) \, d\theta = 64 \cdot \left(-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) = -64\sqrt{3}

Third Term:

Use the identity sin2(θ)=12(1cos(2θ))\sin^2(\theta) = \frac{1}{2}(1 - \cos(2\theta)):

7π611π664sin2(θ)dθ=64127π611π6(1cos(2θ))dθ\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin^2(\theta) \, d\theta = 64 \cdot \frac{1}{2} \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} (1 - \cos(2\theta)) \, d\theta

=32[7π611π61dθ7π611π6cos(2θ)dθ]= 32 \left[ \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 1 \, d\theta - \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} \cos(2\theta) \, d\theta \right]

For the first part:

7π611π61dθ=11π67π6=4π6=2π3\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 1 \, d\theta = \frac{11\pi}{6} - \frac{7\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3}

For the second part:

The integral of cos(2θ)\cos(2\theta) over [7π6,11π6][\frac{7\pi}{6}, \frac{11\pi}{6}] is zero because cos(2θ)\cos(2\theta) is symmetric over this interval:

7π611π6cos(2θ)dθ=0\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} \cos(2\theta) \, d\theta = 0

Thus:

7π611π664sin2(θ)dθ=322π3=64π3\int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} 64\sin^2(\theta) \, d\theta = 32 \cdot \frac{2\pi}{3} = \frac{64\pi}{3}

Step 5: Combine the results:

Now, combine all the terms:

A=12(32π3643+64π3)A = \frac{1}{2} \left( \frac{32\pi}{3} - 64\sqrt{3} + \frac{64\pi}{3} \right)

A=12(96π3643)A = \frac{1}{2} \cdot \left( \frac{96\pi}{3} - 64\sqrt{3} \right)

A=48π3323=16π323A = \frac{48\pi}{3} - 32\sqrt{3} = 16\pi - 32\sqrt{3}

Final Answer:

The area enclosed by one loop of the curve is 16π323\boxed{16\pi - 32\sqrt{3}}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)