image
image
image
image
image
image
image
image
image
image

Find the area of the region that lies inside both curves: r=3cos(θ),r=sin(θ)r = \sqrt{3}\cos(\theta), \quad r = \sin(\theta)

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the area of the region that lies inside both curves: r=3cos(θ),r=sin(θ)r = \sqrt{3}\cos(\theta), \quad r = \sin(\theta)

Find the area of the region that lies inside both curves:
$r = \sqrt{3}\cos(\th | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 2, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.4 Question Number 16
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To find the area of the region that lies inside both curves, we need to determine the bounds of integration where the two curves intersect and use the formula for area in polar coordinates:

A=12θ1θ2min{r12,r22}dθA = \frac{1}{2} \int_{\theta_1}^{\theta_2} \min\{r_1^2, r_2^2\} \, d\theta

1. Find the Points of Intersection:

The two curves are given as:

  1. r1=3cos(θ)r_1 = \sqrt{3}\cos(\theta)
  2. r2=sin(θ)r_2 = \sin(\theta)

At the points of intersection, r1=r2r_1 = r_2.

Thus:

3cos(θ)=sin(θ)\sqrt{3}\cos(\theta) = \sin(\theta)

Divide through by cos(θ)\cos(\theta) (for cos(θ)0\cos(\theta) \neq 0):

3=tan(θ)\sqrt{3} = \tan(\theta)

Solve for θ\theta:

θ=tan1(3)=π3\theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}

The other angle of intersection is θ=ππ3=2π3\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} (from symmetry).

Thus, the bounds of integration are:

θ1=π3,θ2=2π3.\theta_1 = \frac{\pi}{3}, \quad \theta_2 = \frac{2\pi}{3}.

2. Set Up the Integral:

The area of the region common to both curves is determined by integrating the smaller of r12r_1^2 and r22r_2^2.

Within θ[π3,2π3]\theta \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right], 3cos(θ)\sqrt{3}\cos(\theta) is the smaller value.

Thus:

A=12π32π3(3cos(θ))2dθA = \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} (\sqrt{3}\cos(\theta))^2 \, d\theta

Simplify r12r_1^2:

r12=(3cos(θ))2=3cos2(θ).r_1^2 = (\sqrt{3}\cos(\theta))^2 = 3\cos^2(\theta).

The area becomes:

A=12π32π33cos2(θ)dθA = \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 3\cos^2(\theta) \, d\theta

3. Simplify Using a Trigonometric Identity:

Use the identity cos2(θ)=1+cos(2θ)2\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}:

3cos2(θ)=32(1+cos(2θ))3\cos^2(\theta) = \frac{3}{2} (1 + \cos(2\theta))

Substitute this into the integral:

A=12π32π332(1+cos(2θ))dθA = \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{3}{2} (1 + \cos(2\theta)) \, d\theta

Factor out 32\frac{3}{2}:

A=34π32π3(1+cos(2θ))dθA = \frac{3}{4} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} (1 + \cos(2\theta)) \, d\theta

Split the integral:

A=34[π32π31dθ+π32π3cos(2θ)dθ].A = \frac{3}{4} \left[ \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 1 \, d\theta + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \cos(2\theta) \, d\theta \right].

4. Evaluate Each Integral:

  1. First Integral:

π32π31dθ=[θ]π32π3=2π3π3=π3.\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 1 \, d\theta = \left[ \theta \right]_{\frac{\pi}{3}}^{\frac{2\pi}{3}} = \frac{2\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}.

  1. Second Integral:

π32π3cos(2θ)dθ=12sin(2θ)π32π3.\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \cos(2\theta) \, d\theta = \frac{1}{2} \sin(2\theta) \bigg|_{\frac{\pi}{3}}^{\frac{2\pi}{3}}.

Evaluate sin(2θ)\sin(2\theta) at the bounds:

  • At θ=2π3\theta = \frac{2\pi}{3}:

sin(2θ)=sin(4π3)=32.\sin(2\theta) = \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}.

  • At θ=π3\theta = \frac{\pi}{3}:

sin(2θ)=sin(2π3)=32.\sin(2\theta) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}.

Thus:

π32π3cos(2θ)dθ=12(3232)=12(3)=32.\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \cos(2\theta) \, d\theta = \frac{1}{2} \left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right) = \frac{1}{2} \cdot \left(-\sqrt{3}\right) = -\frac{\sqrt{3}}{2}.

5. Combine Results:

Now substitute the results into the area formula:

A=34[π3+(32)].A = \frac{3}{4} \left[ \frac{\pi}{3} + \left(-\frac{\sqrt{3}}{2}\right) \right].

Simplify:

A=34(π332).A = \frac{3}{4} \left( \frac{\pi}{3} - \frac{\sqrt{3}}{2} \right).

Distribute 34\frac{3}{4}:

A=π4338.A = \frac{\pi}{4} - \frac{3\sqrt{3}}{8}.

Final Answer:

The area of the region that lies inside both curves is:

A=π4338A = \boxed{\frac{\pi}{4} - \frac{3\sqrt{3}}{8}}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)