image
image
image
image
image
image
image
image
image
image

Find the area of the surface: the helicoid (or spiral ramp) with vector equation: r(u,v)=ucos(v)i+usin(v)j+vk,\mathbf{r}(u, v) = u \cos(v) \mathbf{i} + u \sin(v) \mathbf{j} + v \mathbf{k}, where 0u10 \leq u \leq 1 and 0v5π0 \leq v \leq 5\pi.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the area of the surface: the helicoid (or spiral ramp) with vector equation: r(u,v)=ucos(v)i+usin(v)j+vk,\mathbf{r}(u, v) = u \cos(v) \mathbf{i} + u \sin(v) \mathbf{j} + v \mathbf{k}, where 0u10 \leq u \leq 1 and 0v5π0 \leq v \leq 5\pi.

Find the area of the surface: the helicoid (or spiral ramp) with vector equation | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 16, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 16.6 Question Number 23
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To find the surface area of a parametric surface, we use the formula: A=Rru×rvdAA = \iint_R \|\mathbf{r}_u \times \mathbf{r}_v\| \, dA

where:

  • ru=ru\mathbf{r}_u = \frac{\partial \mathbf{r}}{\partial u} (partial derivative with respect to uu),
  • rv=rv\mathbf{r}_v = \frac{\partial \mathbf{r}}{\partial v} (partial derivative with respect to vv),
  • RR is the region in the uvuv-plane defined by 0u10 \leq u \leq 1, 0v5π0 \leq v \leq 5\pi.

Step 1: Compute ru\mathbf{r}_u and rv\mathbf{r}_v

The parametric equation is: r(u,v)=ucos(v),usin(v),v\mathbf{r}(u, v) = \langle u \cos(v), u \sin(v), v \rangle

  1. Compute ru\mathbf{r}_u:

    • u(ucos(v))=cos(v)\frac{\partial}{\partial u}(u \cos(v)) = \cos(v),
    • u(usin(v))=sin(v)\frac{\partial}{\partial u}(u \sin(v)) = \sin(v),
    • u(v)=0\frac{\partial}{\partial u}(v) = 0.

    Thus: ru=cos(v),sin(v),0\mathbf{r}_u = \langle \cos(v), \sin(v), 0 \rangle

  2. Compute rv\mathbf{r}_v:

    • v(ucos(v))=usin(v)\frac{\partial}{\partial v}(u \cos(v)) = -u \sin(v),
    • v(usin(v))=ucos(v)\frac{\partial}{\partial v}(u \sin(v)) = u \cos(v),
    • v(v)=1\frac{\partial}{\partial v}(v) = 1.

    Thus: rv=usin(v),ucos(v),1\mathbf{r}_v = \langle -u \sin(v), u \cos(v), 1 \rangle


Step 2: Compute the Cross Product ru×rv\mathbf{r}_u \times \mathbf{r}_v

The cross product ru×rv\mathbf{r}_u \times \mathbf{r}_v is: ru×rv=ijkcos(v)sin(v)0usin(v)ucos(v)1\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos(v) & \sin(v) & 0 \\ -u \sin(v) & u \cos(v) & 1 \end{vmatrix}

Expanding the determinant:

  1. For i\mathbf{i}: isin(v)0ucos(v)1=i[sin(v)0]=isin(v)\mathbf{i} \begin{vmatrix} \sin(v) & 0 \\ u \cos(v) & 1 \end{vmatrix} = \mathbf{i} \left[\sin(v) - 0\right] = \mathbf{i} \sin(v)

  2. For j\mathbf{j}: jcos(v)0usin(v)1=j[cos(v)(1)(0)(usin(v))]=jcos(v)-\mathbf{j} \begin{vmatrix} \cos(v) & 0 \\ -u \sin(v) & 1 \end{vmatrix} = -\mathbf{j} \left[\cos(v)(1) - (0)(-u \sin(v))\right] = -\mathbf{j} \cos(v)

  3. For k\mathbf{k}: kcos(v)sin(v)usin(v)ucos(v)=k[ucos2(v)+usin2(v)]=ku\mathbf{k} \begin{vmatrix} \cos(v) & \sin(v) \\ -u \sin(v) & u \cos(v) \end{vmatrix} = \mathbf{k} \left[u \cos^2(v) + u \sin^2(v)\right] = \mathbf{k} u

Thus: ru×rv=sin(v),cos(v),u\mathbf{r}_u \times \mathbf{r}_v = \langle \sin(v), -\cos(v), u \rangle


Step 3: Compute the Magnitude of ru×rv\mathbf{r}_u \times \mathbf{r}_v

The magnitude is: ru×rv=sin2(v)+(cos(v))2+u2\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{\sin^2(v) + (-\cos(v))^2 + u^2}

Simplify: ru×rv=sin2(v)+cos2(v)+u2=1+u2\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{\sin^2(v) + \cos^2(v) + u^2} = \sqrt{1 + u^2}


Step 4: Set Up the Double Integral

The surface area is: A=R1+u2dAA = \iint_R \sqrt{1 + u^2} \, dA

Substitute the bounds for uu and vv: A=05π011+u2dudvA = \int_0^{5\pi} \int_0^1 \sqrt{1 + u^2} \, du \, dv


Step 5: Evaluate the Inner Integral (with respect to uu)

Let: I=011+u2duI = \int_0^1 \sqrt{1 + u^2} \, du

Use the substitution u=sinh(t)u = \sinh(t), so du=cosh(t)dtdu = \cosh(t) \, dt and 1+u2=cosh2(t)1 + u^2 = \cosh^2(t).

When u=0u = 0, t=0t = 0, and when u=1u = 1, t=sinh1(1)t = \sinh^{-1}(1).

The integral becomes: I=0sinh1(1)cosh2(t)dtI = \int_0^{\sinh^{-1}(1)} \cosh^2(t) \, dt

Use the identity cosh2(t)=12(cosh(2t)+1)\cosh^2(t) = \frac{1}{2}(\cosh(2t) + 1): I=120sinh1(1)(cosh(2t)+1)dtI = \frac{1}{2} \int_0^{\sinh^{-1}(1)} (\cosh(2t) + 1) \, dt

Separate the terms: I=120sinh1(1)cosh(2t)dt+120sinh1(1)1dtI = \frac{1}{2} \int_0^{\sinh^{-1}(1)} \cosh(2t) \, dt + \frac{1}{2} \int_0^{\sinh^{-1}(1)} 1 \, dt

For cosh(2t)dt\int \cosh(2t) \, dt, the integral is 12sinh(2t)\frac{1}{2} \sinh(2t). For 1dt\int 1 \, dt, the result is tt.

Evaluate: I=12[12sinh(2t)]0sinh1(1)+12[t]0sinh1(1)I = \frac{1}{2} \left[\frac{1}{2} \sinh(2t) \right]_0^{\sinh^{-1}(1)} + \frac{1}{2} \left[t\right]_0^{\sinh^{-1}(1)} I=14sinh(2sinh1(1))+12sinh1(1)I = \frac{1}{4} \sinh(2 \sinh^{-1}(1)) + \frac{1}{2} \sinh^{-1}(1)

Simplify using sinh(2x)=2sinh(x)cosh(x)\sinh(2x) = 2\sinh(x)\cosh(x) and sinh1(1)=ln(1+2)\sinh^{-1}(1) = \ln(1 + \sqrt{2}).


Step 6: Evaluate the Outer Integral (with respect to vv)

After evaluating II, multiply by the vv-integral: 05πdv=5π\int_0^{5\pi} dv = 5\pi

Thus: A=5πIA = 5\pi \cdot I

Final Answer:

The surface area is: A=5π[14sinh(2sinh1(1))+12sinh1(1)]A = 5\pi \left[\frac{1}{4} \sinh(2 \sinh^{-1}(1)) + \frac{1}{2} \sinh^{-1}(1)\right]



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)