image
image
image
image
image
image
image
image
image
image

Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest tenth of a degree.) 2,1,4\langle 2, 1, 4 \rangle.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the direction cosines and direction angles of the vector. (give the direction angles correct to the nearest tenth of a degree.) 2,1,4\langle 2, 1, 4 \rangle.

Find the direction cosines and direction angles of the vector. (give the directi | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 18, 2024

Calculus Homework Help

This is the solution to Math 1C
Assignment: 12.3 Question Number 13
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

The direction cosines of a vector v=a,b,c\mathbf{v} = \langle a, b, c \rangle are:

  1. cosα=av\cos\alpha = \frac{a}{|\mathbf{v}|} (angle with the xx-axis),
  2. cosβ=bv\cos\beta = \frac{b}{|\mathbf{v}|} (angle with the yy-axis),
  3. cosγ=cv\cos\gamma = \frac{c}{|\mathbf{v}|} (angle with the zz-axis).

The direction angles are found using:
α=cos1(cosα),β=cos1(cosβ),γ=cos1(cosγ).\alpha = \cos^{-1}(\cos\alpha), \quad \beta = \cos^{-1}(\cos\beta), \quad \gamma = \cos^{-1}(\cos\gamma).

Step 1: Find the magnitude of the vector v\mathbf{v}:

The magnitude of v=2,1,4\mathbf{v} = \langle 2, 1, 4 \rangle is:
v=a2+b2+c2.|\mathbf{v}| = \sqrt{a^2 + b^2 + c^2}.

Substitute a=2a = 2, b=1b = 1, and c=4c = 4:
v=22+12+42.|\mathbf{v}| = \sqrt{2^2 + 1^2 + 4^2}.

Simplify:
v=4+1+16=21.|\mathbf{v}| = \sqrt{4 + 1 + 16} = \sqrt{21}.

Step 2: Compute the direction cosines:

  1. For cosα\cos\alpha (angle with the xx-axis):
    cosα=av=221.\cos\alpha = \frac{a}{|\mathbf{v}|} = \frac{2}{\sqrt{21}}.

  2. For cosβ\cos\beta (angle with the yy-axis):
    cosβ=bv=121.\cos\beta = \frac{b}{|\mathbf{v}|} = \frac{1}{\sqrt{21}}.

  3. For cosγ\cos\gamma (angle with the zz-axis):
    cosγ=cv=421.\cos\gamma = \frac{c}{|\mathbf{v}|} = \frac{4}{\sqrt{21}}.

Step 3: Find the direction angles:

To find α\alpha, β\beta, and γ\gamma, take the inverse cosine (arccos) of the direction cosines.

  1. For α\alpha:
    α=cos1(221).\alpha = \cos^{-1}\left(\frac{2}{\sqrt{21}}\right).

  2. For β\beta:
    β=cos1(121).\beta = \cos^{-1}\left(\frac{1}{\sqrt{21}}\right).

  3. For γ\gamma:
    γ=cos1(421).\gamma = \cos^{-1}\left(\frac{4}{\sqrt{21}}\right).

Using a calculator to approximate:

  1. 2210.436\frac{2}{\sqrt{21}} \approx 0.436:
    α=cos1(0.436)64.1\alpha = \cos^{-1}(0.436) \approx 64.1^\circ.

  2. 1210.218\frac{1}{\sqrt{21}} \approx 0.218:
    β=cos1(0.218)77.4\beta = \cos^{-1}(0.218) \approx 77.4^\circ.

  3. 4210.872\frac{4}{\sqrt{21}} \approx 0.872:
    γ=cos1(0.872)29.2\gamma = \cos^{-1}(0.872) \approx 29.2^\circ.

Final Answer:

1. Direction cosines:
  • cosα=2210.436\cos\alpha = \boxed{\frac{2}{\sqrt{21}} \approx 0.436}


  • cosβ=1210.218\cos\beta = \boxed{\frac{1}{\sqrt{21}} \approx 0.218}


  • cosγ=4210.872\cos\gamma = \boxed{\frac{4}{\sqrt{21}} \approx 0.872}

2. Direction angles:
  • α64.2\alpha \approx \boxed{64.2^\circ}

  • β77.4\beta \approx \boxed{77.4^\circ}

  • γ29.2\gamma \approx \boxed{29.2^\circ}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)