image
image
image
image
image
image
image
image
image
image

Find the exact length of the curve defined by: 36y2=(x24)3,5x9,y036y^2 = (x^2 - 4)^3, \quad 5 \leq x \leq 9, \quad y \geq 0

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the exact length of the curve defined by: 36y2=(x24)3,5x9,y036y^2 = (x^2 - 4)^3, \quad 5 \leq x \leq 9, \quad y \geq 0

Solution:

Neetesh Kumar

Neetesh Kumar | November 08, 2024

Calculus Homework Help

Arc Length Question
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We will use the arc length formula to find the exact length of the curve.
The arc length LL of a curve defined by a function y=f(x)y = f(x) from x=ax = a to x=bx = b is given by:

L=ab1+(dydx)2dxL = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx

Step 1: Express yy in Terms of xx

First, we need to isolate yy from the equation given.

Starting with the equation: 36y2=(x24)336y^2 = (x^2 - 4)^3

Divide both sides by 36: y2=(x24)336y^2 = \frac{(x^2 - 4)^3}{36}

Taking the square root, we get: y=16(x24)3/2y = \frac{1}{6} (x^2 - 4)^{3/2}

Step 2: Compute the Derivative dydx\frac{dy}{dx}

Next, we need to compute the derivative of yy with respect to xx:

Using the chain rule: dydx=1632(x24)1/2ddx(x24)\frac{dy}{dx} = \frac{1}{6} \cdot \frac{3}{2} (x^2 - 4)^{1/2} \cdot \frac{d}{dx}(x^2 - 4) =1632(x24)1/22x= \frac{1}{6} \cdot \frac{3}{2} (x^2 - 4)^{1/2} \cdot 2x =x2(x24)1/2= \frac{x}{2} (x^2 - 4)^{1/2}

Step 3: Compute (dydx)2\left(\frac{dy}{dx}\right)^2

Now we compute (dydx)2\left(\frac{dy}{dx}\right)^2: (dydx)2=(x2(x24)1/2)2\left(\frac{dy}{dx}\right)^2 = \left(\frac{x}{2} (x^2 - 4)^{1/2}\right)^2 =x24(x24)= \frac{x^2}{4} (x^2 - 4)

Step 4: Set Up the Arc Length Integral

We can now substitute (dydx)2\left(\frac{dy}{dx}\right)^2 into the arc length formula:

L=591+(dydx)2dxL = \int_5^9 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx =591+x24(x24)dx= \int_5^9 \sqrt{1 + \frac{x^2}{4} (x^2 - 4)} \, dx =591+x44x24dx= \int_5^9 \sqrt{1 + \frac{x^4 - 4x^2}{4}} \, dx =594+x44x24dx= \int_5^9 \sqrt{\frac{4 + x^4 - 4x^2}{4}} \, dx

L=59(x22)22dx=59(x22)2dx=59(x221)dxL = \int_5^9 \frac{\sqrt{(x^2 - 2)^2}}{2} \, dx = \int_5^9 \frac{(x^2 - 2)}{2} \, dx = \int_5^9 (\frac{x^2}{2} - 1) \, dx

Step 5: Simplify the Integral

[x36x]59=(9369)(5365)=2903\bigg[ \frac{x^3}{6} - x \bigg]_5^9 = (\frac{9^3}{6} - 9) - (\frac{5^3}{6} - 5) = \frac{290}{3}

Final Answer:

The exact length of the curve is = 2903\boxed{\frac{290}{3}} or 96.6667\boxed{96.6667}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)