image
image
image
image
image
image
image
image
image
image

Find the exact length of the curve. Use a graph to determine the parameter interval: r=cos2(θ2)r = \cos^2\left(\frac{\theta}{2}\right)

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the exact length of the curve. use a graph to determine the parameter interval: r=cos2(θ2)r = \cos^2\left(\frac{\theta}{2}\right)

Find the exact length of the curve. use a graph to determine the parameter inter | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 2, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.4 Question Number 21
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To determine the length of the curve in polar coordinates, we use the formula for the arc length of a polar curve:

L=abr2+(drdθ)2dθL = \int_a^b \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta

Step 1: Given Curve and Parameter Interval:

The given curve is r=cos2(θ2)r = \cos^2\left(\frac{\theta}{2}\right).

From the graph of the function, the parameter interval for θ\theta is [0,2π][0, 2\pi]. This is because the polar function completes a full period within this interval.

Step 2: Compute drdθ\frac{dr}{d\theta}:

First, differentiate rr with respect to θ\theta:

r=cos2(θ2)r = \cos^2\left(\frac{\theta}{2}\right)

Using the chain rule:

drdθ=2cos(θ2)ddθ(cos(θ2))\frac{dr}{d\theta} = 2\cos\left(\frac{\theta}{2}\right)\cdot \frac{d}{d\theta}\left(\cos\left(\frac{\theta}{2}\right)\right)

The derivative of cos(θ2)\cos\left(\frac{\theta}{2}\right) is:

ddθ(cos(θ2))=12sin(θ2)\frac{d}{d\theta}\left(\cos\left(\frac{\theta}{2}\right)\right) = -\frac{1}{2}\sin\left(\frac{\theta}{2}\right)

Substitute this back:

drdθ=2cos(θ2)(12sin(θ2))\frac{dr}{d\theta} = 2\cos\left(\frac{\theta}{2}\right)\cdot\left(-\frac{1}{2}\sin\left(\frac{\theta}{2}\right)\right)

Simplify:

drdθ=cos(θ2)sin(θ2)\frac{dr}{d\theta} = -\cos\left(\frac{\theta}{2}\right)\sin\left(\frac{\theta}{2}\right)

Using the identity sin(2x)=2sin(x)cos(x)\sin(2x) = 2\sin(x)\cos(x):

drdθ=12sin(θ)\frac{dr}{d\theta} = -\frac{1}{2}\sin\left(\theta\right)

Step 3: Substitute into the Arc Length Formula:

Now, substitute rr and drdθ\frac{dr}{d\theta} into the arc length formula:

L=02πcos4(θ2)+(12sin(θ))2dθL = \int_0^{2\pi} \sqrt{\cos^4\left(\frac{\theta}{2}\right) + \left(-\frac{1}{2}\sin(\theta)\right)^2} \, d\theta

Simplify the terms inside the square root:

  1. r2=cos4(θ2)r^2 = \cos^4\left(\frac{\theta}{2}\right)
  2. (drdθ)2=(12sin(θ))2=14sin2(θ)\left(\frac{dr}{d\theta}\right)^2 = \left(-\frac{1}{2}\sin(\theta)\right)^2 = \frac{1}{4}\sin^2(\theta)

So the integral becomes:

L=02πcos4(θ2)+14sin2(θ)dθL = \int_0^{2\pi} \sqrt{\cos^4\left(\frac{\theta}{2}\right) + \frac{1}{4}\sin^2(\theta)} \, d\theta

Step 4: Solve the Integral:

The integral is non-trivial to evaluate by hand and typically requires numerical methods or advanced techniques. However, the exact expression for LL is:

L=02πcos4(θ2)+14sin2(θ)dθL = \int_0^{2\pi} \sqrt{\cos^4\left(\frac{\theta}{2}\right) + \frac{1}{4}\sin^2(\theta)} \, d\theta

For practical computation, use a numerical integrator or graphing tool to evaluate this integral. The approximate value of the curve length is L3.82L \approx 3.82.

Final Answer:

The exact length of the curve is given by:

L=02πcos4(θ2)+14sin2(θ)dθL = \int_0^{2\pi} \sqrt{\cos^4\left(\frac{\theta}{2}\right) + \frac{1}{4}\sin^2(\theta)} \, d\theta

The approximate value of the curve length is:

L3.82L \approx \boxed{3.82}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)