Neetesh Kumar | January 3, 2025
Calculus Homework Help
This is the solution to Math 1c
Assignment: 10.2 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.
Get Homework Help
Step-by-step solution:
Step 1: Formula for arc length of a parametric curve
The arc length of a parametric curve is given by:
L = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 d t L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt L = ∫ a b ( d t d x ) 2 + ( d t d y ) 2 d t
Here, x = 5 cos ( t ) − cos ( 5 t ) x = 5\cos(t) - \cos(5t) x = 5 cos ( t ) − cos ( 5 t ) and y = 5 sin ( t ) − sin ( 5 t ) y = 5\sin(t) - \sin(5t) y = 5 sin ( t ) − sin ( 5 t ) with t ∈ [ 0 , π ] t \in [0, \pi] t ∈ [ 0 , π ] .
Step 2: Compute d x d t \frac{dx}{dt} d t d x and d y d t \frac{dy}{dt} d t d y
Differentiate x = 5 cos ( t ) − cos ( 5 t ) x = 5\cos(t) - \cos(5t) x = 5 cos ( t ) − cos ( 5 t ) :
Using the chain rule:
d x d t = − 5 sin ( t ) + 5 sin ( 5 t ) \frac{dx}{dt} = -5\sin(t) + 5\sin(5t) d t d x = − 5 sin ( t ) + 5 sin ( 5 t )
Differentiate y = 5 sin ( t ) − sin ( 5 t ) y = 5\sin(t) - \sin(5t) y = 5 sin ( t ) − sin ( 5 t ) :
Using the chain rule:
d y d t = 5 cos ( t ) − 5 cos ( 5 t ) \frac{dy}{dt} = 5\cos(t) - 5\cos(5t) d t d y = 5 cos ( t ) − 5 cos ( 5 t )
Step 3: Write the arc length formula
Substitute d x d t \frac{dx}{dt} d t d x and d y d t \frac{dy}{dt} d t d y into the formula for L L L :
L = ∫ 0 π ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 d t L = \int_0^\pi \sqrt{\left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2} \, dt L = ∫ 0 π ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 d t
Expand the terms inside the square root:
Expand ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 \left(-5\sin(t) + 5\sin(5t)\right)^2 ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 :
( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 = 25 sin 2 ( t ) − 50 sin ( t ) sin ( 5 t ) + 25 sin 2 ( 5 t ) \left(-5\sin(t) + 5\sin(5t)\right)^2 = 25\sin^2(t) - 50\sin(t)\sin(5t) + 25\sin^2(5t) ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 = 25 sin 2 ( t ) − 50 sin ( t ) sin ( 5 t ) + 25 sin 2 ( 5 t )
Expand ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 \left(5\cos(t) - 5\cos(5t)\right)^2 ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 :
( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 cos 2 ( t ) − 50 cos ( t ) cos ( 5 t ) + 25 cos 2 ( 5 t ) \left(5\cos(t) - 5\cos(5t)\right)^2 = 25\cos^2(t) - 50\cos(t)\cos(5t) + 25\cos^2(5t) ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 cos 2 ( t ) − 50 cos ( t ) cos ( 5 t ) + 25 cos 2 ( 5 t )
Combine the terms:
( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 ( sin 2 ( t ) + cos 2 ( t ) ) + 25 ( sin 2 ( 5 t ) + cos 2 ( 5 t ) ) − 50 ( sin ( t ) sin ( 5 t ) + cos ( t ) cos ( 5 t ) ) \left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 25\left(\sin^2(t) + \cos^2(t)\right) + 25\left(\sin^2(5t) + \cos^2(5t)\right) - 50\left(\sin(t)\sin(5t) + \cos(t)\cos(5t)\right) ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 ( sin 2 ( t ) + cos 2 ( t ) ) + 25 ( sin 2 ( 5 t ) + cos 2 ( 5 t ) ) − 50 ( sin ( t ) sin ( 5 t ) + cos ( t ) cos ( 5 t ) )
Use the Pythagorean identity sin 2 ( t ) + cos 2 ( t ) = 1 \sin^2(t) + \cos^2(t) = 1 sin 2 ( t ) + cos 2 ( t ) = 1 :
( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 ( 1 ) + 25 ( 1 ) − 50 ( cos ( t − 5 t ) ) \left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 25(1) + 25(1) - 50\left(\cos(t - 5t)\right) ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 25 ( 1 ) + 25 ( 1 ) − 50 ( cos ( t − 5 t ) )
Simplify:
( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 50 − 50 cos ( 4 t ) \left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 50 - 50\cos(4t) ( − 5 sin ( t ) + 5 sin ( 5 t ) ) 2 + ( 5 cos ( t ) − 5 cos ( 5 t ) ) 2 = 50 − 50 cos ( 4 t )
Thus, the arc length becomes:
L = ∫ 0 π 50 − 50 cos ( 4 t ) d t L = \int_0^\pi \sqrt{50 - 50\cos(4t)} \, dt L = ∫ 0 π 50 − 50 cos ( 4 t ) d t
Step 4: Simplify the square root
Factor out 50 50 50 :
50 − 50 cos ( 4 t ) = 50 1 − cos ( 4 t ) = 5 2 1 − cos ( 4 t ) . \sqrt{50 - 50\cos(4t)} = \sqrt{50}\sqrt{1 - \cos(4t)} = 5\sqrt{2}\sqrt{1 - \cos(4t)}. 50 − 50 cos ( 4 t ) = 50 1 − cos ( 4 t ) = 5 2 1 − cos ( 4 t ) .
The arc length becomes:
L = 5 2 ∫ 0 π 1 − cos ( 4 t ) d t . L = 5\sqrt{2} \int_0^\pi \sqrt{1 - \cos(4t)} \, dt. L = 5 2 ∫ 0 π 1 − cos ( 4 t ) d t .
Step 5: Simplify 1 − cos ( 4 t ) \sqrt{1 - \cos(4t)} 1 − cos ( 4 t )
Using the trigonometric identity 1 − cos ( 4 t ) = 2 sin 2 ( 2 t ) 1 - \cos(4t) = 2\sin^2(2t) 1 − cos ( 4 t ) = 2 sin 2 ( 2 t ) :
1 − cos ( 4 t ) = 2 sin 2 ( 2 t ) = 2 ∣ sin ( 2 t ) ∣ . \sqrt{1 - \cos(4t)} = \sqrt{2\sin^2(2t)} = \sqrt{2}|\sin(2t)|. 1 − cos ( 4 t ) = 2 sin 2 ( 2 t ) = 2 ∣ sin ( 2 t ) ∣.
Since t ∈ [ 0 , π ] t \in [0, \pi] t ∈ [ 0 , π ] , sin ( 2 t ) ≥ 0 \sin(2t) \geq 0 sin ( 2 t ) ≥ 0 , so:
1 − cos ( 4 t ) = 2 sin ( 2 t ) . \sqrt{1 - \cos(4t)} = \sqrt{2}\sin(2t). 1 − cos ( 4 t ) = 2 sin ( 2 t ) .
The arc length becomes:
L = 5 2 ∫ 0 π 2 sin ( 2 t ) d t . L = 5\sqrt{2} \int_0^\pi \sqrt{2}\sin(2t) \, dt. L = 5 2 ∫ 0 π 2 sin ( 2 t ) d t .
Simplify:
L = 10 ∫ 0 π sin ( 2 t ) d t . L = 10 \int_0^\pi \sin(2t) \, dt. L = 10 ∫ 0 π sin ( 2 t ) d t .
Step 6: Evaluate the integral
The integral of sin ( 2 t ) \sin(2t) sin ( 2 t ) is:
∫ sin ( 2 t ) d t = − 1 2 cos ( 2 t ) . \int \sin(2t) \, dt = -\frac{1}{2}\cos(2t). ∫ sin ( 2 t ) d t = − 2 1 cos ( 2 t ) .
Evaluate from t = 0 t = 0 t = 0 to t = π t = \pi t = π :
At t = π t = \pi t = π :
− 1 2 cos ( 2 π ) = − 1 2 ( 1 ) = − 1 2 . -\frac{1}{2}\cos(2\pi) = -\frac{1}{2}(1) = -\frac{1}{2}. − 2 1 cos ( 2 π ) = − 2 1 ( 1 ) = − 2 1 .
At t = 0 t = 0 t = 0 :
− 1 2 cos ( 0 ) = − 1 2 ( 1 ) = − 1 2 . -\frac{1}{2}\cos(0) = -\frac{1}{2}(1) = -\frac{1}{2}. − 2 1 cos ( 0 ) = − 2 1 ( 1 ) = − 2 1 .
Subtract:
∫ 0 π sin ( 2 t ) d t = − 1 2 − ( − 1 2 ) = 0. \int_0^\pi \sin(2t) \, dt = -\frac{1}{2} - \left(-\frac{1}{2}\right) = 0. ∫ 0 π sin ( 2 t ) d t = − 2 1 − ( − 2 1 ) = 0.
Final Answer:
The exact length of the curve is:
L = 0 L = \boxed{0} L = 0
Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my
Youtube channel for video solutions to similar questions.
Keep Smiling :-)
Leave a comment