image
image
image
image
image
image
image
image
image
image

Find the exact length of the curve: x=5cos(t)cos(5t),y=5sin(t)sin(5t),0tπx = 5\cos(t) - \cos(5t), \quad y = 5\sin(t) - \sin(5t), \quad 0 \leq t \leq \pi

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the exact length of the curve: x=5cos(t)cos(5t),y=5sin(t)sin(5t),0tπx = 5\cos(t) - \cos(5t), \quad y = 5\sin(t) - \sin(5t), \quad 0 \leq t \leq \pi

Find the exact length of the curve:
$x = 5\cos(t) - \cos(5t), \quad y = 5\sin(t | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 3, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.2 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Formula for arc length of a parametric curve

The arc length of a parametric curve is given by:

L=ab(dxdt)2+(dydt)2dtL = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt

Here, x=5cos(t)cos(5t)x = 5\cos(t) - \cos(5t) and y=5sin(t)sin(5t)y = 5\sin(t) - \sin(5t) with t[0,π]t \in [0, \pi].

Step 2: Compute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}

Differentiate x=5cos(t)cos(5t)x = 5\cos(t) - \cos(5t):

Using the chain rule:

dxdt=5sin(t)+5sin(5t)\frac{dx}{dt} = -5\sin(t) + 5\sin(5t)

Differentiate y=5sin(t)sin(5t)y = 5\sin(t) - \sin(5t):

Using the chain rule:

dydt=5cos(t)5cos(5t)\frac{dy}{dt} = 5\cos(t) - 5\cos(5t)

Step 3: Write the arc length formula

Substitute dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} into the formula for LL:

L=0π(5sin(t)+5sin(5t))2+(5cos(t)5cos(5t))2dtL = \int_0^\pi \sqrt{\left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2} \, dt

Expand the terms inside the square root:

  1. Expand (5sin(t)+5sin(5t))2\left(-5\sin(t) + 5\sin(5t)\right)^2:

    (5sin(t)+5sin(5t))2=25sin2(t)50sin(t)sin(5t)+25sin2(5t)\left(-5\sin(t) + 5\sin(5t)\right)^2 = 25\sin^2(t) - 50\sin(t)\sin(5t) + 25\sin^2(5t)

  2. Expand (5cos(t)5cos(5t))2\left(5\cos(t) - 5\cos(5t)\right)^2:

    (5cos(t)5cos(5t))2=25cos2(t)50cos(t)cos(5t)+25cos2(5t)\left(5\cos(t) - 5\cos(5t)\right)^2 = 25\cos^2(t) - 50\cos(t)\cos(5t) + 25\cos^2(5t)

  3. Combine the terms:

    (5sin(t)+5sin(5t))2+(5cos(t)5cos(5t))2=25(sin2(t)+cos2(t))+25(sin2(5t)+cos2(5t))50(sin(t)sin(5t)+cos(t)cos(5t))\left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 25\left(\sin^2(t) + \cos^2(t)\right) + 25\left(\sin^2(5t) + \cos^2(5t)\right) - 50\left(\sin(t)\sin(5t) + \cos(t)\cos(5t)\right)

Use the Pythagorean identity sin2(t)+cos2(t)=1\sin^2(t) + \cos^2(t) = 1:

(5sin(t)+5sin(5t))2+(5cos(t)5cos(5t))2=25(1)+25(1)50(cos(t5t))\left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 25(1) + 25(1) - 50\left(\cos(t - 5t)\right)

Simplify:

(5sin(t)+5sin(5t))2+(5cos(t)5cos(5t))2=5050cos(4t)\left(-5\sin(t) + 5\sin(5t)\right)^2 + \left(5\cos(t) - 5\cos(5t)\right)^2 = 50 - 50\cos(4t)

Thus, the arc length becomes:

L=0π5050cos(4t)dtL = \int_0^\pi \sqrt{50 - 50\cos(4t)} \, dt

Step 4: Simplify the square root

Factor out 5050:

5050cos(4t)=501cos(4t)=521cos(4t).\sqrt{50 - 50\cos(4t)} = \sqrt{50}\sqrt{1 - \cos(4t)} = 5\sqrt{2}\sqrt{1 - \cos(4t)}.

The arc length becomes:

L=520π1cos(4t)dt.L = 5\sqrt{2} \int_0^\pi \sqrt{1 - \cos(4t)} \, dt.

Step 5: Simplify 1cos(4t)\sqrt{1 - \cos(4t)}

Using the trigonometric identity 1cos(4t)=2sin2(2t)1 - \cos(4t) = 2\sin^2(2t):

1cos(4t)=2sin2(2t)=2sin(2t).\sqrt{1 - \cos(4t)} = \sqrt{2\sin^2(2t)} = \sqrt{2}|\sin(2t)|.

Since t[0,π]t \in [0, \pi], sin(2t)0\sin(2t) \geq 0, so:

1cos(4t)=2sin(2t).\sqrt{1 - \cos(4t)} = \sqrt{2}\sin(2t).

The arc length becomes:

L=520π2sin(2t)dt.L = 5\sqrt{2} \int_0^\pi \sqrt{2}\sin(2t) \, dt.

Simplify:

L=100πsin(2t)dt.L = 10 \int_0^\pi \sin(2t) \, dt.

Step 6: Evaluate the integral

The integral of sin(2t)\sin(2t) is:

sin(2t)dt=12cos(2t).\int \sin(2t) \, dt = -\frac{1}{2}\cos(2t).

Evaluate from t=0t = 0 to t=πt = \pi:

  1. At t=πt = \pi:

    12cos(2π)=12(1)=12.-\frac{1}{2}\cos(2\pi) = -\frac{1}{2}(1) = -\frac{1}{2}.

  2. At t=0t = 0:

    12cos(0)=12(1)=12.-\frac{1}{2}\cos(0) = -\frac{1}{2}(1) = -\frac{1}{2}.

Subtract:

0πsin(2t)dt=12(12)=0.\int_0^\pi \sin(2t) \, dt = -\frac{1}{2} - \left(-\frac{1}{2}\right) = 0.

Final Answer:

The exact length of the curve is:

L=0L = \boxed{0}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)