image
image
image
image
image
image
image
image
image
image

Find the exact length of the polar curve: r=e2θ,0θ2πr = e^{2\theta}, \quad 0 \leq \theta \leq 2\pi

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the exact length of the polar curve: r=e2θ,0θ2πr = e^{2\theta}, \quad 0 \leq \theta \leq 2\pi

Find the exact length of the polar curve:
$r = e^{2\theta}, \quad 0 \leq \theta | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | January 2, 2025

Calculus Homework Help

This is the solution to Math 1c
Assignment: 10.4 Question Number 18
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

The length of a polar curve is given by the formula:

L=θ1θ2r2+(drdθ)2dθ.L = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta.

Here, r=e2θr = e^{2\theta} and θ[0,2π]\theta \in [0, 2\pi].

1. Compute drdθ\frac{dr}{d\theta}:

Differentiate r=e2θr = e^{2\theta} with respect to θ\theta:

drdθ=2e2θ.\frac{dr}{d\theta} = 2e^{2\theta}.

2. Substitute into the Length Formula:

Using r=e2θr = e^{2\theta} and drdθ=2e2θ\frac{dr}{d\theta} = 2e^{2\theta}, the formula becomes:

L=02π(e2θ)2+(2e2θ)2dθ.L = \int_{0}^{2\pi} \sqrt{\left(e^{2\theta}\right)^2 + \left(2e^{2\theta}\right)^2} \, d\theta.

Simplify the terms inside the square root:

L=02πe4θ+4e4θdθ.L = \int_{0}^{2\pi} \sqrt{e^{4\theta} + 4e^{4\theta}} \, d\theta.

Factor out e4θe^{4\theta}:

L=02π5e4θdθ.L = \int_{0}^{2\pi} \sqrt{5e^{4\theta}} \, d\theta.

Simplify further:

L=02π5e2θdθ.L = \int_{0}^{2\pi} \sqrt{5} e^{2\theta} \, d\theta.

3. Evaluate the Integral:

Factor out 5\sqrt{5}:

L=502πe2θdθ.L = \sqrt{5} \int_{0}^{2\pi} e^{2\theta} \, d\theta.

The integral of e2θe^{2\theta} is:

e2θdθ=e2θ2.\int e^{2\theta} \, d\theta = \frac{e^{2\theta}}{2}.

Apply the bounds θ=0\theta = 0 to θ=2π\theta = 2\pi:

L=5[e2θ2]02π.L = \sqrt{5} \left[ \frac{e^{2\theta}}{2} \right]_{0}^{2\pi}.

Substitute the limits:

L=5(e4π2e02).L = \sqrt{5} \left( \frac{e^{4\pi}}{2} - \frac{e^{0}}{2} \right).

Simplify:

L=5e4π12.L = \sqrt{5} \cdot \frac{e^{4\pi} - 1}{2}.

Final Answer:

The exact length of the polar curve is:

L=52(e4π1)L = \boxed{\frac{\sqrt{5}}{2} \left(e^{4\pi} - 1\right)}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)