image
image
image
image
image
image
image
image
image
image

Find the mass of a thin funnel in the shape of a cone z=x2+y2z = \sqrt{x^2 + y^2}, 1z31 \leq z \leq 3, if its density function is ρ(x,y,z)=5z\rho(x, y, z) = 5 - z.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the mass of a thin funnel in the shape of a cone z=x2+y2z = \sqrt{x^2 + y^2}, 1z31 \leq z \leq 3, if its density function is ρ(x,y,z)=5z\rho(x, y, z) = 5 - z.

Find the mass of a thin funnel in the shape of a cone z = \sqrt{x^2 + y^2}, $1 | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | November 13, 2024

Calculus Homework Help

This is the solution to Math 1D
Assignment: 16.7 Question Number 20
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To find the mass of the funnel, we use the surface integral:

Mass=SρdS\text{Mass} = \iint_{S} \rho \, dS

where ρ(x,y,z)=5z\rho(x, y, z) = 5 - z is the density function, and dSdS represents the surface element of the cone.

Step 1: Parametrize the Surface

The surface of the cone is given by z=x2+y2z = \sqrt{x^2 + y^2}, which implies that r=x2+y2=zr = \sqrt{x^2 + y^2} = z in cylindrical coordinates. Thus, the surface can be parametrized as:

x=rcosθx = r \cos \theta, y=rsinθy = r \sin \theta, and z=rz = r, with 1r31 \leq r \leq 3.

Step 2: Compute dSdS

The surface element dSdS for a surface parametrized by z=f(x,y)z = f(x, y) is:

dS=1+(fx)2+(fy)2dxdydS = \sqrt{1 + \left( \frac{\partial f}{\partial x} \right)^2 + \left( \frac{\partial f}{\partial y} \right)^2} \, dx \, dy

Since z=f(x,y)=x2+y2z = f(x, y) = \sqrt{x^2 + y^2}, we compute fx\frac{\partial f}{\partial x} and fy\frac{\partial f}{\partial y}.

  1. fx=xx2+y2=xz\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{z}
  2. fy=yx2+y2=yz\frac{\partial f}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}} = \frac{y}{z}

Then,

dS=1+(xz)2+(yz)2dxdydS = \sqrt{1 + \left( \frac{x}{z} \right)^2 + \left( \frac{y}{z} \right)^2} \, dx \, dy

Simplify the expression under the square root:

dS=1+x2+y2z2dxdydS = \sqrt{1 + \frac{x^2 + y^2}{z^2}} \, dx \, dy

Since x2+y2=z2x^2 + y^2 = z^2 (from the cone equation), this becomes:

dS=1+z2z2dxdy=2dxdydS = \sqrt{1 + \frac{z^2}{z^2}} \, dx \, dy = \sqrt{2} \, dx \, dy

Thus, dS=2rdrdθdS = \sqrt{2} \, r \, dr \, d\theta in cylindrical coordinates.

Step 3: Set Up the Integral

The mass of the funnel is:

Mass=SρdS=02π13(5r)2rdrdθ\text{Mass} = \iint_{S} \rho \, dS = \int_{0}^{2\pi} \int_{1}^{3} (5 - r) \sqrt{2} \, r \, dr \, d\theta

Factor out 2\sqrt{2}:

=202πdθ13(5r)rdr= \sqrt{2} \int_{0}^{2\pi} d\theta \int_{1}^{3} (5 - r) \, r \, dr

Separate the integrals:

=202πdθ13(5rr2)dr= \sqrt{2} \int_{0}^{2\pi} d\theta \int_{1}^{3} (5r - r^2) \, dr

Step 4: Evaluate Each Integral

  1. 02πdθ=2π\int_{0}^{2\pi} d\theta = 2\pi
  2. 13(5rr2)dr=[5r22r33]13\int_{1}^{3} (5r - r^2) \, dr = \left[ \frac{5r^2}{2} - \frac{r^3}{3} \right]_{1}^{3}

Evaluate the second integral:

13(5rr2)dr=(5322333)(5122133)\int_{1}^{3} (5r - r^2) \, dr = \left( \frac{5 \cdot 3^2}{2} - \frac{3^3}{3} \right) - \left( \frac{5 \cdot 1^2}{2} - \frac{1^3}{3} \right)

=(4529)(5213)= \left( \frac{45}{2} - 9 \right) - \left( \frac{5}{2} - \frac{1}{3} \right)

Convert terms to a common denominator where necessary:

=(452182)(15626)= \left( \frac{45}{2} - \frac{18}{2} \right) - \left( \frac{15}{6} - \frac{2}{6} \right)

=272136=81136=686=343= \frac{27}{2} - \frac{13}{6} = \frac{81 - 13}{6} = \frac{68}{6} = \frac{34}{3}

Now, combine results:

Mass=22π343\text{Mass} = \sqrt{2} \cdot 2\pi \cdot \frac{34}{3}

=68π23= \frac{68\pi \sqrt{2}}{3}

Final Answer

The mass of the funnel is 68π23\boxed{\dfrac{68\pi \sqrt{2}}{3}}.



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)