Neetesh Kumar | December 7, 2024
Calculus Homework Help
This is the solution to Math 132
Assignment: 11.8 Question Number 8
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.
Get Homework Help
Step-by-step solution:
To find the radius of convergence R R R , we apply the Ratio Test to the general term:
a n = 8 n ( x + 8 ) n n . a_n = \frac{8^n (x+8)^n}{\sqrt{n}}. a n = n 8 n ( x + 8 ) n .
Step 1: Apply the Ratio Test
The Ratio Test states that the series converges absolutely if:
lim n → ∞ ∣ a n + 1 a n ∣ < 1. \displaystyle\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1. n → ∞ lim a n a n + 1 < 1.
Compute the ratio:
∣ a n + 1 a n ∣ = ∣ 8 n + 1 ( x + 8 ) n + 1 n + 1 8 n ( x + 8 ) n n ∣ = ∣ 8 ⋅ ( x + 8 ) ⋅ n n + 1 ∣ . \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{8^{n+1} (x+8)^{n+1}}{\sqrt{n+1}}}{\frac{8^n (x+8)^n}{\sqrt{n}}} \right| = \left| 8 \cdot (x+8) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right|. a n a n + 1 = n 8 n ( x + 8 ) n n + 1 8 n + 1 ( x + 8 ) n + 1 = 8 ⋅ ( x + 8 ) ⋅ n + 1 n .
Simplify the terms:
∣ a n + 1 a n ∣ = ∣ 8 ( x + 8 ) ∣ ⋅ n n + 1 . \left| \frac{a_{n+1}}{a_n} \right| = \left| 8(x+8) \right| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. a n a n + 1 = ∣ 8 ( x + 8 ) ∣ ⋅ n + 1 n .
Step 2: Take the limit as n → ∞ n \to \infty n → ∞
For large n n n , the term n n + 1 \frac{\sqrt{n}}{\sqrt{n+1}} n + 1 n approaches 1 1 1 .
Thus:
lim n → ∞ ∣ a n + 1 a n ∣ = ∣ 8 ( x + 8 ) ∣ . \displaystyle\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \left| 8(x+8) \right|. n → ∞ lim a n a n + 1 = ∣ 8 ( x + 8 ) ∣ .
The Ratio Test guarantees convergence if:
∣ 8 ( x + 8 ) ∣ < 1. \left| 8(x+8) \right| < 1. ∣ 8 ( x + 8 ) ∣ < 1.
Simplify the inequality:
∣ x + 8 ∣ < 1 8 . \left| x+8 \right| < \frac{1}{8}. ∣ x + 8 ∣ < 8 1 .
Thus, the radius of convergence is:
R = 1 8 R = \boxed{\frac{1}{8}} R = 8 1
Step 3: Interval of convergence
The series converges absolutely for ∣ x + 8 ∣ < 1 8 \left| x+8 \right| < \frac{1}{8} ∣ x + 8 ∣ < 8 1 , which gives the interval:
− 8 − 1 8 < x < − 8 + 1 8 , -8 - \frac{1}{8} < x < -8 + \frac{1}{8}, − 8 − 8 1 < x < − 8 + 8 1 , or equivalently:
− 65 8 < x < − 63 8 . -\frac{65}{8} < x < -\frac{63}{8}. − 8 65 < x < − 8 63 .
Next, we test the endpoints x = − 65 8 x = -\frac{65}{8} x = − 8 65 and x = − 63 8 x = -\frac{63}{8} x = − 8 63 to determine whether the series converges there.
Case 1: x = − 65 8 x = -\frac{65}{8} x = − 8 65
Substitute x = − 65 8 x = -\frac{65}{8} x = − 8 65 into the series:
∑ n = 1 ∞ 8 n ( − 65 8 + 8 ) n n = ∑ n = 1 ∞ 8 n ( − 1 8 ) n n = ∑ n = 1 ∞ ( − 1 ) n n . \displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{65}{8}+8)^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{1}{8})^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}. n = 1 ∑ ∞ n 8 n ( − 8 65 + 8 ) n = n = 1 ∑ ∞ n 8 n ( − 8 1 ) n = n = 1 ∑ ∞ n ( − 1 ) n .
This is an alternating series with terms a n = 1 n a_n = \frac{1}{\sqrt{n}} a n = n 1 .
Since the terms decrease monotonically to 0 0 0 , the series converges by the Alternating Series Test .
Case 2: x = − 63 8 x = -\frac{63}{8} x = − 8 63
Substitute x = − 63 8 x = -\frac{63}{8} x = − 8 63 into the series:
∑ n = 1 ∞ 8 n ( − 63 8 + 8 ) n n = ∑ n = 1 ∞ 8 n ( 1 8 ) n n = ∑ n = 1 ∞ 1 n . \displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{63}{8}+8)^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{8^n (\frac{1}{8})^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{1}{\sqrt{n}}. n = 1 ∑ ∞ n 8 n ( − 8 63 + 8 ) n = n = 1 ∑ ∞ n 8 n ( 8 1 ) n = n = 1 ∑ ∞ n 1 .
This is the harmonic series with p = 1 2 p = \frac{1}{2} p = 2 1 , which diverges because p ≤ 1 p \leq 1 p ≤ 1 .
Final Interval of Convergence
The series converges for x ∈ [ − 65 8 , − 63 8 ) x \in \left[-\frac{65}{8}, -\frac{63}{8}\right) x ∈ [ − 8 65 , − 8 63 ) .
I = [ − 65 8 , − 63 8 ) I = \boxed{\left[-\frac{65}{8}, -\frac{63}{8}\right)} I = [ − 8 65 , − 8 63 )
Final Answers:
Radius of convergence:
R = 1 8 R = \boxed{\frac{1}{8}} R = 8 1
Interval of convergence:
I = [ − 65 8 , − 63 8 ) I = \boxed{\left[-\frac{65}{8}, -\frac{63}{8}\right)} I = [ − 8 65 , − 8 63 )
Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my
Youtube channel for video solutions to similar questions.
Keep Smiling :-)
Leave a comment