image
image
image
image
image
image
image
image
image
image

Find the radius of convergence, RR, of the series: n=18n(x+8)nn\displaystyle\sum_{n=1}^{\infty} \frac{8^n (x+8)^n}{\sqrt{n}}

R=R= \boxed{}

Find the interval, II, of convergence of the series. (Enter your answer using interval notation.)

I=I= \boxed{}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the radius of convergence, rr, of the series: n=18n(x+8)nn\displaystyle\sum_{n=1}^{\infty} \frac{8^n (x+8)^n}{\sqrt{n}}

r=r= \boxed{}

find the interval, ii, of convergence of the series. (enter your answer using interval notation.)

i=i= \boxed{}

Find the radius of convergence, r, of the series: $\displaystyle\sum_{n=1}^{\i | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 7, 2024

Calculus Homework Help

This is the solution to Math 132
Assignment: 11.8 Question Number 8
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To find the radius of convergence RR, we apply the Ratio Test to the general term:

an=8n(x+8)nn.a_n = \frac{8^n (x+8)^n}{\sqrt{n}}.

Step 1: Apply the Ratio Test

The Ratio Test states that the series converges absolutely if:

limnan+1an<1.\displaystyle\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1.

Compute the ratio:

an+1an=8n+1(x+8)n+1n+18n(x+8)nn=8(x+8)nn+1.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{8^{n+1} (x+8)^{n+1}}{\sqrt{n+1}}}{\frac{8^n (x+8)^n}{\sqrt{n}}} \right| = \left| 8 \cdot (x+8) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right|.

Simplify the terms:

an+1an=8(x+8)nn+1.\left| \frac{a_{n+1}}{a_n} \right| = \left| 8(x+8) \right| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}.

Step 2: Take the limit as nn \to \infty

For large nn, the term nn+1\frac{\sqrt{n}}{\sqrt{n+1}} approaches 11.

Thus:

limnan+1an=8(x+8).\displaystyle\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \left| 8(x+8) \right|.

The Ratio Test guarantees convergence if:

8(x+8)<1.\left| 8(x+8) \right| < 1.

Simplify the inequality:

x+8<18.\left| x+8 \right| < \frac{1}{8}.

Thus, the radius of convergence is:

R=18R = \boxed{\frac{1}{8}}

Step 3: Interval of convergence

The series converges absolutely for x+8<18\left| x+8 \right| < \frac{1}{8}, which gives the interval:

818<x<8+18,-8 - \frac{1}{8} < x < -8 + \frac{1}{8}, or equivalently:

658<x<638.-\frac{65}{8} < x < -\frac{63}{8}.

Next, we test the endpoints x=658x = -\frac{65}{8} and x=638x = -\frac{63}{8} to determine whether the series converges there.

Case 1: x=658x = -\frac{65}{8}

Substitute x=658x = -\frac{65}{8} into the series:

n=18n(658+8)nn=n=18n(18)nn=n=1(1)nn.\displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{65}{8}+8)^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{1}{8})^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}.

This is an alternating series with terms an=1na_n = \frac{1}{\sqrt{n}}.

Since the terms decrease monotonically to 00, the series converges by the Alternating Series Test.

Case 2: x=638x = -\frac{63}{8}

Substitute x=638x = -\frac{63}{8} into the series:

n=18n(638+8)nn=n=18n(18)nn=n=11n.\displaystyle\sum_{n=1}^\infty \frac{8^n (-\frac{63}{8}+8)^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{8^n (\frac{1}{8})^n}{\sqrt{n}} = \displaystyle\sum_{n=1}^\infty \frac{1}{\sqrt{n}}.

This is the harmonic series with p=12p = \frac{1}{2}, which diverges because p1p \leq 1.

Final Interval of Convergence

The series converges for x[658,638)x \in \left[-\frac{65}{8}, -\frac{63}{8}\right).

I=[658,638)I = \boxed{\left[-\frac{65}{8}, -\frac{63}{8}\right)}

Final Answers:

Radius of convergence:

R=18R = \boxed{\frac{1}{8}}

Interval of convergence:

I=[658,638)I = \boxed{\left[-\frac{65}{8}, -\frac{63}{8}\right)}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)