Neetesh Kumar | December 18, 2024
Calculus Homework Help
This is the solution to Math 1C
Assignment: 12.3 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.
Get Homework Help
Step-by-step solution:
Scalar Projection of b \mathbf{b} b onto a \mathbf{a} a :
The formula for the scalar projection of b \mathbf{b} b onto a \mathbf{a} a is:
scalar projection = a ⋅ b ∣ a ∣ . \text{scalar projection} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}. scalar projection = ∣ a ∣ a ⋅ b .
Step 1: Compute the dot product a ⋅ b \mathbf{a} \cdot \mathbf{b} a ⋅ b :
The dot product of two vectors a = ⟨ a 1 , a 2 ⟩ \mathbf{a} = \langle a_1, a_2 \rangle a = ⟨ a 1 , a 2 ⟩ and b = ⟨ b 1 , b 2 ⟩ \mathbf{b} = \langle b_1, b_2 \rangle b = ⟨ b 1 , b 2 ⟩ is:
a ⋅ b = a 1 b 1 + a 2 b 2 . \mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2. a ⋅ b = a 1 b 1 + a 2 b 2 .
Substitute a = ⟨ − 3 , 4 ⟩ \mathbf{a} = \langle -3, 4 \rangle a = ⟨ − 3 , 4 ⟩ and b = ⟨ 2 , 9 ⟩ \mathbf{b} = \langle 2, 9 \rangle b = ⟨ 2 , 9 ⟩ :
a ⋅ b = ( − 3 ) ( 2 ) + ( 4 ) ( 9 ) . \mathbf{a} \cdot \mathbf{b} = (-3)(2) + (4)(9). a ⋅ b = ( − 3 ) ( 2 ) + ( 4 ) ( 9 ) .
Simplify:
a ⋅ b = − 6 + 36 = 30. \mathbf{a} \cdot \mathbf{b} = -6 + 36 = 30. a ⋅ b = − 6 + 36 = 30.
Step 2: Compute the magnitude of a \mathbf{a} a :
The magnitude of a vector a = ⟨ a 1 , a 2 ⟩ \mathbf{a} = \langle a_1, a_2 \rangle a = ⟨ a 1 , a 2 ⟩ is:
∣ a ∣ = a 1 2 + a 2 2 . |\mathbf{a}| = \sqrt{a_1^2 + a_2^2}. ∣ a ∣ = a 1 2 + a 2 2 .
Substitute a = ⟨ − 3 , 4 ⟩ \mathbf{a} = \langle -3, 4 \rangle a = ⟨ − 3 , 4 ⟩ :
∣ a ∣ = ( − 3 ) 2 + 4 2 . |\mathbf{a}| = \sqrt{(-3)^2 + 4^2}. ∣ a ∣ = ( − 3 ) 2 + 4 2 .
Simplify:
∣ a ∣ = 9 + 16 = 25 = 5. |\mathbf{a}| = \sqrt{9 + 16} = \sqrt{25} = 5. ∣ a ∣ = 9 + 16 = 25 = 5.
Step 3: Find the scalar projection:
Substitute a ⋅ b = 30 \mathbf{a} \cdot \mathbf{b} = 30 a ⋅ b = 30 and ∣ a ∣ = 5 |\mathbf{a}| = 5 ∣ a ∣ = 5 into the formula:
scalar projection = 30 5 . \text{scalar projection} = \frac{30}{5}. scalar projection = 5 30 .
Simplify:
scalar projection = 6. \text{scalar projection} = 6. scalar projection = 6.
Vector Projection of b \mathbf{b} b onto a \mathbf{a} a :
The formula for the vector projection of b \mathbf{b} b onto a \mathbf{a} a is:
vector projection = a ⋅ b ∣ a ∣ 2 a . \text{vector projection} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}. vector projection = ∣ a ∣ 2 a ⋅ b a .
Step 1: Compute ∣ a ∣ 2 |\mathbf{a}|^2 ∣ a ∣ 2 :
From earlier, ∣ a ∣ = 5 |\mathbf{a}| = 5 ∣ a ∣ = 5 , so:
∣ a ∣ 2 = 5 2 = 25. |\mathbf{a}|^2 = 5^2 = 25. ∣ a ∣ 2 = 5 2 = 25.
Step 2: Find the vector projection:
Substitute a ⋅ b = 30 \mathbf{a} \cdot \mathbf{b} = 30 a ⋅ b = 30 , ∣ a ∣ 2 = 25 |\mathbf{a}|^2 = 25 ∣ a ∣ 2 = 25 , and a = ⟨ − 3 , 4 ⟩ \mathbf{a} = \langle -3, 4 \rangle a = ⟨ − 3 , 4 ⟩ :
vector projection = 30 25 a . \text{vector projection} = \frac{30}{25} \mathbf{a}. vector projection = 25 30 a .
Simplify the scalar factor:
vector projection = 6 5 a . \text{vector projection} = \frac{6}{5} \mathbf{a}. vector projection = 5 6 a .
Step 3: Multiply by a \mathbf{a} a :
vector projection = 6 5 ⟨ − 3 , 4 ⟩ . \text{vector projection} = \frac{6}{5} \langle -3, 4 \rangle. vector projection = 5 6 ⟨ − 3 , 4 ⟩ .
Distribute the scalar:
vector projection = ⟨ 6 5 ( − 3 ) , 6 5 ( 4 ) ⟩ . \text{vector projection} = \langle \frac{6}{5}(-3), \frac{6}{5}(4) \rangle. vector projection = ⟨ 5 6 ( − 3 ) , 5 6 ( 4 )⟩ .
Simplify:
vector projection = ⟨ − 18 5 = − 3.6 , 24 5 = 4.8 ⟩ . \text{vector projection} = \langle -\frac{18}{5}= -3.6, \frac{24}{5} = 4.8 \rangle. vector projection = ⟨ − 5 18 = − 3.6 , 5 24 = 4.8 ⟩ .
Final Answer:
1. Scalar projection of b \mathbf{b} b onto a \mathbf{a} a :
6 \boxed{6} 6
2. Vector projection of b \mathbf{b} b onto a \mathbf{a} a :
⟨ − 3.6 , 4.8 ⟩ \langle -3.6, 4.8 \rangle ⟨ − 3.6 , 4.8 ⟩
Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my
Youtube channel for video solutions to similar questions.
Keep Smiling :-)
Leave a comment