image
image
image
image
image
image
image
image
image
image

Find the scalar and vector projections of b\mathbf{b} onto a\mathbf{a}: a=3,4,b=2,9\mathbf{a} = \langle -3, 4 \rangle, \quad \mathbf{b} = \langle 2, 9 \rangle.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the scalar and vector projections of b\mathbf{b} onto a\mathbf{a}: a=3,4,b=2,9\mathbf{a} = \langle -3, 4 \rangle, \quad \mathbf{b} = \langle 2, 9 \rangle.

Find the scalar and vector projections of \mathbf{b} onto \mathbf{a}:
$\ma | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | December 18, 2024

Calculus Homework Help

This is the solution to Math 1C
Assignment: 12.3 Question Number 15
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Scalar Projection of b\mathbf{b} onto a\mathbf{a}:

The formula for the scalar projection of b\mathbf{b} onto a\mathbf{a} is:
scalar projection=aba.\text{scalar projection} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}.

Step 1: Compute the dot product ab\mathbf{a} \cdot \mathbf{b}:

The dot product of two vectors a=a1,a2\mathbf{a} = \langle a_1, a_2 \rangle and b=b1,b2\mathbf{b} = \langle b_1, b_2 \rangle is:
ab=a1b1+a2b2.\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2.

Substitute a=3,4\mathbf{a} = \langle -3, 4 \rangle and b=2,9\mathbf{b} = \langle 2, 9 \rangle:
ab=(3)(2)+(4)(9).\mathbf{a} \cdot \mathbf{b} = (-3)(2) + (4)(9).

Simplify:
ab=6+36=30.\mathbf{a} \cdot \mathbf{b} = -6 + 36 = 30.

Step 2: Compute the magnitude of a\mathbf{a}:

The magnitude of a vector a=a1,a2\mathbf{a} = \langle a_1, a_2 \rangle is:
a=a12+a22.|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}.

Substitute a=3,4\mathbf{a} = \langle -3, 4 \rangle:
a=(3)2+42.|\mathbf{a}| = \sqrt{(-3)^2 + 4^2}.

Simplify:
a=9+16=25=5.|\mathbf{a}| = \sqrt{9 + 16} = \sqrt{25} = 5.

Step 3: Find the scalar projection:

Substitute ab=30\mathbf{a} \cdot \mathbf{b} = 30 and a=5|\mathbf{a}| = 5 into the formula:
scalar projection=305.\text{scalar projection} = \frac{30}{5}.

Simplify:
scalar projection=6.\text{scalar projection} = 6.

Vector Projection of b\mathbf{b} onto a\mathbf{a}:

The formula for the vector projection of b\mathbf{b} onto a\mathbf{a} is:
vector projection=aba2a.\text{vector projection} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}.

Step 1: Compute a2|\mathbf{a}|^2:

From earlier, a=5|\mathbf{a}| = 5, so:
a2=52=25.|\mathbf{a}|^2 = 5^2 = 25.

Step 2: Find the vector projection:

Substitute ab=30\mathbf{a} \cdot \mathbf{b} = 30, a2=25|\mathbf{a}|^2 = 25, and a=3,4\mathbf{a} = \langle -3, 4 \rangle:
vector projection=3025a.\text{vector projection} = \frac{30}{25} \mathbf{a}.

Simplify the scalar factor:
vector projection=65a.\text{vector projection} = \frac{6}{5} \mathbf{a}.

Step 3: Multiply by a\mathbf{a}:

vector projection=653,4.\text{vector projection} = \frac{6}{5} \langle -3, 4 \rangle.

Distribute the scalar:
vector projection=65(3),65(4).\text{vector projection} = \langle \frac{6}{5}(-3), \frac{6}{5}(4) \rangle.

Simplify:
vector projection=185=3.6,245=4.8.\text{vector projection} = \langle -\frac{18}{5}= -3.6, \frac{24}{5} = 4.8 \rangle.

Final Answer:

1. Scalar projection of b\mathbf{b} onto a\mathbf{a}:

6\boxed{6}

2. Vector projection of b\mathbf{b} onto a\mathbf{a}:

3.6,4.8\langle -3.6, 4.8 \rangle


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)