image
image
image
image
image
image
image
image
image
image

Solve the initial value problem (IVP) using the Laplace transform method:
y2y+5y=8et,y(0)=2,y(0)=12.y'' - 2y' + 5y = -8e^{-t}, \quad y(0) = 2, \quad y'(0) = 12.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Solve the initial value problem (ivp) using the laplace transform method:
y2y+5y=8et,y(0)=2,y(0)=12.y'' - 2y' + 5y = -8e^{-t}, \quad y(0) = 2, \quad y'(0) = 12.

Solution:

Neetesh Kumar

Neetesh Kumar | December 7, 2024

Calculus Homework Help

Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

Step 1: Take the Laplace transform of both sides

The Laplace transform of the equation is: L(y)2L(y)+5L(y)=L(8et).\mathcal{L}(y'') - 2\mathcal{L}(y') + 5\mathcal{L}(y) = \mathcal{L}(-8e^{-t}).

Use the Laplace transform rules:

  1. L(y)=s2Y(s)sy(0)y(0)\mathcal{L}(y'') = s^2Y(s) - sy(0) - y'(0),
  2. L(y)=sY(s)y(0)\mathcal{L}(y') = sY(s) - y(0),
  3. L(y)=Y(s)\mathcal{L}(y) = Y(s),
  4. L(et)=1s+1\mathcal{L}(e^{-t}) = \frac{1}{s+1}.

Substitute these into the equation:
[s2Y(s)sy(0)y(0)]2[sY(s)y(0)]+5Y(s)=81s+1.\big[s^2Y(s) - sy(0) - y'(0)\big] - 2\big[sY(s) - y(0)\big] + 5Y(s) = -8 \cdot \frac{1}{s+1}.


Step 2: Substitute initial conditions

From y(0)=2y(0) = 2 and y(0)=12y'(0) = 12, substitute into the equation:
[s2Y(s)2s12]2[sY(s)2]+5Y(s)=8s+1.\big[s^2Y(s) - 2s - 12\big] - 2\big[sY(s) - 2\big] + 5Y(s) = -\frac{8}{s+1}.

Simplify: s2Y(s)2s122sY(s)+4+5Y(s)=8s+1.s^2Y(s) - 2s - 12 - 2sY(s) + 4 + 5Y(s) = -\frac{8}{s+1}.

Combine terms involving Y(s)Y(s): [s22s+5]Y(s)=8s+1+2s+8.\big[s^2 - 2s + 5\big]Y(s) = \frac{-8}{s+1} + 2s + 8.

Simplify the right-hand side: [s22s+5]Y(s)=8s+1+2s+8.\big[s^2 - 2s + 5\big]Y(s) = \frac{-8}{s+1} + 2s + 8.


Step 3: Solve for Y(s)Y(s)

Y(s)=8s+1+2s+8s22s+5.Y(s) = \frac{\frac{-8}{s+1} + 2s + 8}{s^2 - 2s + 5}.

Combine into a single fraction: Y(s)=8+(2s+8)(s+1)(s+1)(s22s+5).Y(s) = \frac{-8 + (2s + 8)(s+1)}{(s+1)(s^2 - 2s + 5)}.

Expand the numerator: 8+(2s+8)(s+1)=8+2s2+2s+8s+8=2s2+10s.-8 + (2s + 8)(s + 1) = -8 + 2s^2 + 2s + 8s + 8 = 2s^2 + 10s.

Thus: Y(s)=2s2+10s(s+1)(s22s+5).Y(s) = \frac{2s^2 + 10s}{(s+1)(s^2 - 2s + 5)}.


Step 4: Partial fraction decomposition

Decompose Y(s)Y(s) into partial fractions: Y(s)=As+1+Bs+Cs22s+5.Y(s) = \frac{A}{s+1} + \frac{Bs + C}{s^2 - 2s + 5}.

Multiply through by the denominator: 2s2+10s=A(s22s+5)+(Bs+C)(s+1).2s^2 + 10s = A(s^2 - 2s + 5) + (Bs + C)(s+1).

Expand the terms:

  1. A(s22s+5)=As22As+5AA(s^2 - 2s + 5) = As^2 - 2As + 5A,
  2. (Bs+C)(s+1)=Bs2+Bs+Cs+C=Bs2+(B+C)s+C(Bs + C)(s + 1) = Bs^2 + Bs + Cs + C = Bs^2 + (B + C)s + C.

Combine: 2s2+10s8=As22As+5A+Bs2+(B+C)s+C.2s^2 + 10s - 8 = As^2 - 2As + 5A + Bs^2 + (B + C)s + C.

Group terms: (A+B)s2+(2A+B+C)s+(5A+C)=2s2+10s.(A + B)s^2 + (-2A + B + C)s + (5A + C) = 2s^2 + 10s.

Compare coefficients:

  1. A+B=2A + B = 2 (for s2s^2),
  2. 2A+B+C=10-2A + B + C = 10 (for ss),
  3. 5A+C=05A + C = 0 (constant).

Step 5: Solve for AA, BB, and CC

From A+B=2A + B = 2, solve for BB: B=2A.B = 2 - A.

Substitute B=2AB = 2 - A into 2A+B+C=10-2A + B + C = 10:
2A+(2A)+C=10.-2A + (2 - A) + C = 10.
3A+2+C=10.-3A + 2 + C = 10.
C=8+3A.C = 8 + 3A.

Substitute AA and CC into 5A+C=05A + C = 0:
5A+(8+3A)=0.5A + (8 + 3A) = 0.
8A+8=0.8A + 8 = 0.
8A=8.8A = -8.
A=1.A = -1.

Now substitute A=1A = -1 into B=2AB = 2 - A: B=2(1)=3.B = 2 - (-1) = 3.

Finally, substitute A=1A = -1 into C=8+3AC = 8 + 3A: C=8+3(1)=83=5.C = 8 + 3(-1) = 8 - 3 = 5.


Step 6: Rewrite Y(s)Y(s)

Substitute A=1A = -1, B=3B = 3, and C=5C = 5: Y(s)=1s+1+3s+5s22s+5.Y(s) = \frac{-1}{s+1} + \frac{3s + 5}{s^2 - 2s + 5}.


Step 7: Take the inverse Laplace transform

  1. The inverse Laplace of 1s+1\frac{-1}{s+1} is:
    L1(2s+1)=et.\mathcal{L}^{-1}\left(\frac{-2}{s+1}\right) = -e^{-t}.

  2. For 3s+5s22s+5\frac{3s + 5}{s^2 - 2s + 5}, rewrite the denominator as (s1)2+4(s - 1)^2 + 4.
    The term becomes:
    3s+5(s1)2+4=3(s1)+8(s1)2+4.\frac{3s + 5}{(s - 1)^2 + 4} = \frac{3(s - 1) + 8}{(s - 1)^2 + 4}.

Split into two parts:
3(s1)(s1)2+4+8(s1)2+4.\frac{3(s - 1)}{(s - 1)^2 + 4} + \frac{8}{(s - 1)^2 + 4}.

  • The inverse Laplace of 3(s1)(s1)2+4\frac{3(s - 1)}{(s - 1)^2 + 4} is 3etcos(2t)3e^t\cos(2t).
  • The inverse Laplace of 8(s1)2+4\frac{8}{(s - 1)^2 + 4} is 4etsin(2t)4e^t\sin(2t).

Final Solution

Combine all terms:
y(t)=et+3etcos(2t)+4etsin(2t).y(t) = \boxed{-e^{-t} + 3e^t\cos(2t) + 4e^t\sin(2t)}.



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)