image
image
image
image
image
image
image
image
image
image

Consider the following differential equation. y+16y+64y=e8xy'' + 16y' + 64y = e^{-8x} Proceed as in the example to find a particular solution yp(x)y_p(x) of the given differential equation in the integral form yp(x)=x0xG(x,t)f(t)dty_p(x) = \int_{x_0}^x G(x, t) f(t) \, dt.

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Consider the following differential equation. y+16y+64y=e8xy'' + 16y' + 64y = e^{-8x} proceed as in the example to find a particular solution yp(x)y_p(x) of the given differential equation in the integral form yp(x)=x0xg(x,t)f(t)dty_p(x) = \int_{x_0}^x g(x, t) f(t) \, dt.

Consider the following differential equation. y'' + 16y' + 64y = e^{-8x}
proc | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 29, 2024

Differential Equation Homework Help

This is the solution to Math 2A, section 13Z, Fall 2023 | WebAssign
Math002ACh4Sec08 (Homework) Question - 2
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


To solve the differential equation y+16y+64y=e8xy'' + 16y' + 64y = e^{-8x} using variation of parameters (Wronskian method), we will first solve the associated homogeneous equation and then use the Wronskian to find the particular solution.

Step 1: Solve the Homogeneous Equation

The associated homogeneous equation is: y+16y+64y=0y'' + 16y' + 64y = 0

The characteristic equation for this equation is: r2+16r+64=0r^2 + 16r + 64 = 0

Solving for rr: r=16±2562562=8r = \frac{-16 \pm \sqrt{256 - 256}}{2} = -8

This gives a repeated root r=8r = -8. Therefore, the solution to the homogeneous equation is: yh(x)=(C1+C2x)e8xy_h(x) = (C_1 + C_2 x) e^{-8x}

From this, we can select two linearly independent solutions: y1(x)=e8xy_1(x) = e^{-8x} and y2(x)=xe8xy_2(x) = x e^{-8x}

Step 2: Compute the Wronskian of y1y_1 and y2y_2

The Wronskian W(y1,y2)W(y_1, y_2) of two functions y1(x)y_1(x) and y2(x)y_2(x) is defined as:

W(y1,y2)=y1y2y1y2W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}

Compute y1y_1' and y2y_2':

y1=8e8xy_1' = -8 e^{-8x}

y2=e8x8xe8xy_2' = e^{-8x} - 8x e^{-8x}

Now, calculate the Wronskian:

W(y1,y2)=e8xxe8x8e8x(18x)e8xW(y_1, y_2) = \begin{vmatrix} e^{-8x} & x e^{-8x} \\ -8 e^{-8x} & (1 - 8x) e^{-8x} \end{vmatrix}

Expanding this determinant:

W(y1,y2)=e8x(18x)e8xxe8x(8e8x)W(y_1, y_2) = e^{-8x} \cdot (1 - 8x) e^{-8x} - x e^{-8x} \cdot (-8 e^{-8x})

=e16x(18x)+8xe16x= e^{-16x} (1 - 8x) + 8x e^{-16x}

=e16x= e^{-16x}

Thus, the Wronskian W(y1,y2)=e16xW(y_1, y_2) = e^{-16x}.

Step 3: Set Up Integrals for u1(x)u_1(x) and u2(x)u_2(x)

Using variation of parameters, we assume a particular solution of the form:

yp(x)=u1(x)y1(x)+u2(x)y2(x)y_p(x) = u_1(x) y_1(x) + u_2(x) y_2(x)

where u1(x)u_1(x) and u2(x)u_2(x) are functions to be determined.

According to variation of parameters, we have:
u1(x)=y2(x)f(x)W(y1,y2)=xe8xe8xe16x=xu_1'(x) = -\frac{y_2(x) f(x)}{W(y_1, y_2)} = -\frac{x e^{-8x} \cdot e^{-8x}}{e^{-16x}} = -x

u2(x)=y1(x)f(x)W(y1,y2)=e8xe8xe16x=1u_2'(x) = \frac{y_1(x) f(x)}{W(y_1, y_2)} = \frac{e^{-8x} \cdot e^{-8x}}{e^{-16x}} = 1

Step 4: Integrate to Find u1(x)u_1(x) and u2(x)u_2(x)

Now integrate u1(x)u_1'(x) and u2(x)u_2'(x) to find u1(x)u_1(x) and u2(x)u_2(x):

u1(x)=xdx=x22u_1(x) = \int -x \, dx = -\frac{x^2}{2}

u2(x)=1dx=xu_2(x) = \int 1 \, dx = x

Step 5: Write the Particular Solution

The particular solution yp(x)y_p(x) from the Green's Function is then:

yp(x)=u1(x)y1(x)+u2(x)y2(x)y_p(x) = u_1(x) y_1(x) + u_2(x) y_2(x)

yp(x)=x0x(e8t.xe8x)(e8t.te8x)2=(xt)e8(x+t)2.f(t)dty_p(x) = \int_{x_0}^x \dfrac{(e^{-8t}.xe^{-8x}) - (e^{-8t}.te^{-8x})}{2} = \dfrac{(x-t)e^{-8(x+t)}}{2}.f(t)dt

Step 6: Write the General Solution

The general solution to the differential equation is the sum of the homogeneous solution and the particular solution:

y(x)=yh(x)+yp(x)y(x) = y_h(x) + y_p(x)

where

yh(x)=(C1+C2x)e8xy_h(x) = (C_1 + C_2 x) e^{-8x}

and

yp(x)=(xt)e8(x+t)2.f(t)dty_p(x) = \boxed{\dfrac{(x-t)e^{-8(x+t)}}{2}}.f(t)dt

Final Answer

y(x)=C1e8x+C2xe8x+yp(x)y(x) = \boxed{C_1e^{-8x} + C_2 xe^{-8x}} + y_p(x)



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)