Neetesh Kumar | October 27, 2024
Differential Equation Homework Help
This is the solution to Math 2A, section 13Z, Fall 2023 | WebAssign
Math002ACh4Sec06 (Homework) Question - 2
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.
Get Homework Help
Step-by-step solution:
To solve the differential equation y ′ ′ + y = sin 2 ( x ) y'' + y = \sin^2(x) y ′′ + y = sin 2 ( x ) using a variation of parameters, we will proceed as follows:
Step 1: Solve the Homogeneous Equation
The associated homogeneous equation is:
y ′ ′ + y = 0 y'' + y = 0 y ′′ + y = 0
The characteristic equation for this differential equation is:
r 2 + 1 = 0 r^2 + 1 = 0 r 2 + 1 = 0
Solving for r r r :
r = ± i r = \pm i r = ± i
Thus, the solutions to the homogeneous equation are:
y h ( x ) = C 1 cos ( x ) + C 2 sin ( x ) y_h(x) = C_1 \cos(x) + C_2 \sin(x) y h ( x ) = C 1 cos ( x ) + C 2 sin ( x )
Step 2: Rewrite the Non-Homogeneous Term
We are given a non-homogeneous term sin 2 ( x ) \sin^2(x) sin 2 ( x ) on the right side. To apply variation of parameters, we first rewrite sin 2 ( x ) \sin^2(x) sin 2 ( x ) using the identity:
sin 2 ( x ) = 1 − cos ( 2 x ) 2 \sin^2(x) = \frac{1 - \cos(2x)}{2} sin 2 ( x ) = 2 1 − c o s ( 2 x )
Thus, the equation becomes:
y ′ ′ + y = 1 2 − 1 2 cos ( 2 x ) y'' + y = \frac{1}{2} - \frac{1}{2} \cos(2x) y ′′ + y = 2 1 − 2 1 cos ( 2 x )
This allows us to split the problem into solving two separate equations. We write the particular solution as:
y p ( x ) = y p 1 ( x ) + y p 2 ( x ) y_p(x) = y_{p1}(x) + y_{p2}(x) y p ( x ) = y p 1 ( x ) + y p 2 ( x )
where:
y p 1 ′ ′ + y p 1 = 1 2 y_{p1}'' + y_{p1} = \frac{1}{2} y p 1 ′′ + y p 1 = 2 1
y p 2 ′ ′ + y p 2 = − 1 2 cos ( 2 x ) y_{p2}'' + y_{p2} = -\frac{1}{2} \cos(2x) y p 2 ′′ + y p 2 = − 2 1 cos ( 2 x )
Step 3: Solve for y p 1 ( x ) y_{p1}(x) y p 1 ( x )
For the first part, we solve y p 1 ′ ′ + y p 1 = 1 2 y_{p1}'' + y_{p1} = \frac{1}{2} y p 1 ′′ + y p 1 = 2 1 .
Since the right side is a constant, we can try a constant solution, y p 1 = A y_{p1} = A y p 1 = A , where A A A is a constant. Substitute into the equation:
0 + A = 1 2 0 + A = \frac{1}{2} 0 + A = 2 1
Thus, A = 1 2 A = \frac{1}{2} A = 2 1 , so:
y p 1 ( x ) = 1 2 y_{p1}(x) = \frac{1}{2} y p 1 ( x ) = 2 1
Step 4: Solve for y p 2 ( x ) y_{p2}(x) y p 2 ( x ) using Variation of Parameters
Now we solve y p 2 ′ ′ + y p 2 = − 1 2 cos ( 2 x ) y_{p2}'' + y_{p2} = -\frac{1}{2} \cos(2x) y p 2 ′′ + y p 2 = − 2 1 cos ( 2 x ) .
Since the solutions to the homogeneous equation are cos ( x ) \cos(x) cos ( x ) and sin ( x ) \sin(x) sin ( x ) , we assume a particular solution of the form:
y p 2 ( x ) = u 1 ( x ) cos ( x ) + u 2 ( x ) sin ( x ) y_{p2}(x) = u_1(x) \cos(x) + u_2(x) \sin(x) y p 2 ( x ) = u 1 ( x ) cos ( x ) + u 2 ( x ) sin ( x )
where u 1 ( x ) u_1(x) u 1 ( x ) and u 2 ( x ) u_2(x) u 2 ( x ) are functions to be determined.
For variation of parameters, we impose the conditions:
u 1 ′ ( x ) cos ( x ) + u 2 ′ ( x ) sin ( x ) = 0 u_1'(x) \cos(x) + u_2'(x) \sin(x) = 0 u 1 ′ ( x ) cos ( x ) + u 2 ′ ( x ) sin ( x ) = 0
− u 1 ′ ( x ) sin ( x ) + u 2 ′ ( x ) cos ( x ) = − 1 2 cos ( 2 x ) -u_1'(x) \sin(x) + u_2'(x) \cos(x) = -\frac{1}{2} \cos(2x) − u 1 ′ ( x ) sin ( x ) + u 2 ′ ( x ) cos ( x ) = − 2 1 cos ( 2 x )
Step 5: Set Up and Solve for u 1 ′ ( x ) u_1'(x) u 1 ′ ( x ) and u 2 ′ ( x ) u_2'(x) u 2 ′ ( x )
The Wronskian W ( cos ( x ) , sin ( x ) ) W(\cos(x), \sin(x)) W ( cos ( x ) , sin ( x )) is:
W = cos 2 ( x ) + sin 2 ( x ) = 1 W = \cos^2(x) + \sin^2(x) = 1 W = cos 2 ( x ) + sin 2 ( x ) = 1
Using Cramer’s rule, we find u 1 ′ ( x ) u_1'(x) u 1 ′ ( x ) and u 2 ′ ( x ) u_2'(x) u 2 ′ ( x ) :
u 1 ′ ( x ) = ∣ 0 sin ( x ) − cos ( 2 x ) 2 cos ( x ) ∣ W = sin ( x ) cos ( 2 x ) 2 u_1'(x) = \frac{\begin{vmatrix} 0 & \sin(x) \\ -\frac{\cos(2x)}{2} & \cos(x) \end{vmatrix}}{W} = \frac{\sin(x) \cos(2x)}{2} u 1 ′ ( x ) = W 0 − 2 c o s ( 2 x ) sin ( x ) cos ( x ) = 2 s i n ( x ) c o s ( 2 x )
u 1 ′ ( x ) = ∣ cos ( x ) 0 − sin ( x ) − cos ( 2 x ) 2 ∣ W = − cos ( x ) cos ( 2 x ) 2 u_1'(x) = \frac{\begin{vmatrix} \cos(x) & 0 \\ -\sin(x) & -\frac{\cos(2x)}{2} \end{vmatrix}}{W} = -\frac{\cos(x) \cos(2x)}{2} u 1 ′ ( x ) = W cos ( x ) − sin ( x ) 0 − 2 c o s ( 2 x ) = − 2 c o s ( x ) c o s ( 2 x )
Step 6: Integrate to Find u 1 ( x ) u_1(x) u 1 ( x ) and u 2 ( x ) u_2(x) u 2 ( x )
Integrate u 1 ′ ( x ) u_1'(x) u 1 ′ ( x ) and u 2 ′ ( x ) u_2'(x) u 2 ′ ( x ) with respect to x x x :
u 1 ( x ) = ∫ sin ( x ) cos ( 2 x ) 2 d x u_1(x) = \int \frac{\sin(x) \cos(2x)}{2} \, dx u 1 ( x ) = ∫ 2 s i n ( x ) c o s ( 2 x ) d x
So, u 1 ( x ) = 3 cos ( x ) − cos ( 3 x ) 12 u_1(x) = \frac{3\cos(x)-\cos(3x)}{12} u 1 ( x ) = 12 3 c o s ( x ) − c o s ( 3 x ) .
u 2 ( x ) = ∫ − cos ( x ) cos ( 2 x ) 2 d x u_2(x) = \int -\frac{\cos(x) \cos(2x)}{2} \, dx u 2 ( x ) = ∫ − 2 c o s ( x ) c o s ( 2 x ) d x
So, u 2 ( x ) = 3 sin ( x ) + sin ( 3 x ) 12 u_2(x) = \frac{3\sin(x)+\sin(3x)}{12} u 2 ( x ) = 12 3 s i n ( x ) + s i n ( 3 x ) .
Step 7: Form the Particular Solution y p ( x ) y_p(x) y p ( x )
y p ( x ) = y p 1 ( x ) + y p 2 ( x ) = 1 2 + y p 2 ( x ) y_p(x) = y_{p1}(x) + y_{p2}(x) = \frac{1}{2} + y_{p2}(x) y p ( x ) = y p 1 ( x ) + y p 2 ( x ) = 2 1 + y p 2 ( x )
Substitute u 1 ( x ) u_1(x) u 1 ( x ) and u 2 ( x ) u_2(x) u 2 ( x ) into y p 2 ( x ) = u 1 ( x ) cos ( x ) + u 2 ( x ) sin ( x ) y_{p2}(x) = u_1(x) \cos(x) + u_2(x) \sin(x) y p 2 ( x ) = u 1 ( x ) cos ( x ) + u 2 ( x ) sin ( x ) :
y p 2 ( x ) = ( 3 cos ( x ) − cos ( 3 x ) 12 ) cos ( x ) + ( 3 sin ( x ) + sin ( 3 x ) 12 ) sin ( x ) y_{p2}(x) = \left(\frac{3\cos(x)-\cos(3x)}{12}\right) \cos(x) + \left(\frac{3\sin(x)+\sin(3x)}{12}\right) \sin(x) y p 2 ( x ) = ( 12 3 c o s ( x ) − c o s ( 3 x ) ) cos ( x ) + ( 12 3 s i n ( x ) + s i n ( 3 x ) ) sin ( x )
Simplify each term:
y p 2 ( x ) = 1 4 − cos ( 2 x ) 12 y_{p2}(x) = \frac{1}{4} - \frac{\cos(2x)}{12} y p 2 ( x ) = 4 1 − 12 c o s ( 2 x )
so, y p ( x ) = 1 2 + 1 4 − cos ( 2 x ) 12 = 3 4 − cos ( 2 x ) 12 y_p(x) = \frac{1}{2} + \frac{1}{4} - \frac{\cos(2x)}{12} = \frac{3}{4} - \frac{\cos(2x)}{12} y p ( x ) = 2 1 + 4 1 − 12 c o s ( 2 x ) = 4 3 − 12 c o s ( 2 x )
Step 8: Write the General Solution
The general solution to the differential equation is:
y ( x ) = y h ( x ) + y p ( x ) y(x) = y_h(x) + y_p(x) y ( x ) = y h ( x ) + y p ( x )
where
y h ( x ) = C 1 cos ( x ) + C 2 sin ( x ) y_h(x) = C_1 \cos(x) + C_2 \sin(x) y h ( x ) = C 1 cos ( x ) + C 2 sin ( x )
and
y p ( x ) = 3 4 − cos ( 2 x ) 12 y_p(x) = \frac{3}{4} - \frac{\cos(2x)}{12} y p ( x ) = 4 3 − 12 c o s ( 2 x )
So,
y ( x ) = C 1 cos ( x ) + C 2 sin ( x ) + 3 4 − cos ( 2 x ) 12 y(x) = \boxed{C_1 \cos(x) + C_2 \sin(x) + \frac{3}{4} - \frac{\cos(2x)}{12}} y ( x ) = C 1 cos ( x ) + C 2 sin ( x ) + 4 3 − 12 cos ( 2 x )
Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)
Leave a comment