image
image
image
image
image
image
image
image
image
image

Solve the differential equation by variation of parameters: y+y=sin2(x)y'' + y = \sin^2(x). Find y(x)=y(x) =

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Solve the differential equation by variation of parameters: y+y=sin2(x)y'' + y = \sin^2(x). find y(x)=y(x) =

Solve the differential equation by variation of parameters: $y'' + y = \sin^2(x) | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 27, 2024

Differential Equation Homework Help

This is the solution to Math 2A, section 13Z, Fall 2023 | WebAssign
Math002ACh4Sec06 (Homework) Question - 2
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

To solve the differential equation y+y=sin2(x)y'' + y = \sin^2(x) using a variation of parameters, we will proceed as follows:

Step 1: Solve the Homogeneous Equation

The associated homogeneous equation is: y+y=0y'' + y = 0

The characteristic equation for this differential equation is: r2+1=0r^2 + 1 = 0

Solving for rr: r=±ir = \pm i

Thus, the solutions to the homogeneous equation are: yh(x)=C1cos(x)+C2sin(x)y_h(x) = C_1 \cos(x) + C_2 \sin(x)

Step 2: Rewrite the Non-Homogeneous Term

We are given a non-homogeneous term sin2(x)\sin^2(x) on the right side. To apply variation of parameters, we first rewrite sin2(x)\sin^2(x) using the identity:

sin2(x)=1cos(2x)2\sin^2(x) = \frac{1 - \cos(2x)}{2}

Thus, the equation becomes:

y+y=1212cos(2x)y'' + y = \frac{1}{2} - \frac{1}{2} \cos(2x)

This allows us to split the problem into solving two separate equations. We write the particular solution as:

yp(x)=yp1(x)+yp2(x)y_p(x) = y_{p1}(x) + y_{p2}(x)

where:

  1. yp1+yp1=12y_{p1}'' + y_{p1} = \frac{1}{2}
  2. yp2+yp2=12cos(2x)y_{p2}'' + y_{p2} = -\frac{1}{2} \cos(2x)

Step 3: Solve for yp1(x)y_{p1}(x)

For the first part, we solve yp1+yp1=12y_{p1}'' + y_{p1} = \frac{1}{2}.

Since the right side is a constant, we can try a constant solution, yp1=Ay_{p1} = A, where AA is a constant. Substitute into the equation:

0+A=120 + A = \frac{1}{2}

Thus, A=12A = \frac{1}{2}, so:

yp1(x)=12y_{p1}(x) = \frac{1}{2}

Step 4: Solve for yp2(x)y_{p2}(x) using Variation of Parameters

Now we solve yp2+yp2=12cos(2x)y_{p2}'' + y_{p2} = -\frac{1}{2} \cos(2x).

Since the solutions to the homogeneous equation are cos(x)\cos(x) and sin(x)\sin(x), we assume a particular solution of the form:

yp2(x)=u1(x)cos(x)+u2(x)sin(x)y_{p2}(x) = u_1(x) \cos(x) + u_2(x) \sin(x)

where u1(x)u_1(x) and u2(x)u_2(x) are functions to be determined.

For variation of parameters, we impose the conditions:

  1. u1(x)cos(x)+u2(x)sin(x)=0u_1'(x) \cos(x) + u_2'(x) \sin(x) = 0
  2. u1(x)sin(x)+u2(x)cos(x)=12cos(2x)-u_1'(x) \sin(x) + u_2'(x) \cos(x) = -\frac{1}{2} \cos(2x)

Step 5: Set Up and Solve for u1(x)u_1'(x) and u2(x)u_2'(x)

The Wronskian W(cos(x),sin(x))W(\cos(x), \sin(x)) is: W=cos2(x)+sin2(x)=1W = \cos^2(x) + \sin^2(x) = 1

Using Cramer’s rule, we find u1(x)u_1'(x) and u2(x)u_2'(x):

  1. u1(x)=0sin(x)cos(2x)2cos(x)W=sin(x)cos(2x)2u_1'(x) = \frac{\begin{vmatrix} 0 & \sin(x) \\ -\frac{\cos(2x)}{2} & \cos(x) \end{vmatrix}}{W} = \frac{\sin(x) \cos(2x)}{2}

  1. u1(x)=cos(x)0sin(x)cos(2x)2W=cos(x)cos(2x)2u_1'(x) = \frac{\begin{vmatrix} \cos(x) & 0 \\ -\sin(x) & -\frac{\cos(2x)}{2} \end{vmatrix}}{W} = -\frac{\cos(x) \cos(2x)}{2}

Step 6: Integrate to Find u1(x)u_1(x) and u2(x)u_2(x)

Integrate u1(x)u_1'(x) and u2(x)u_2'(x) with respect to xx:

  1. u1(x)=sin(x)cos(2x)2dxu_1(x) = \int \frac{\sin(x) \cos(2x)}{2} \, dx

    So, u1(x)=3cos(x)cos(3x)12u_1(x) = \frac{3\cos(x)-\cos(3x)}{12} .


  1. u2(x)=cos(x)cos(2x)2dxu_2(x) = \int -\frac{\cos(x) \cos(2x)}{2} \, dx

    So, u2(x)=3sin(x)+sin(3x)12u_2(x) = \frac{3\sin(x)+\sin(3x)}{12} .

Step 7: Form the Particular Solution yp(x)y_p(x)

yp(x)=yp1(x)+yp2(x)=12+yp2(x)y_p(x) = y_{p1}(x) + y_{p2}(x) = \frac{1}{2} + y_{p2}(x)

Substitute u1(x)u_1(x) and u2(x)u_2(x) into yp2(x)=u1(x)cos(x)+u2(x)sin(x)y_{p2}(x) = u_1(x) \cos(x) + u_2(x) \sin(x):

yp2(x)=(3cos(x)cos(3x)12)cos(x)+(3sin(x)+sin(3x)12)sin(x)y_{p2}(x) = \left(\frac{3\cos(x)-\cos(3x)}{12}\right) \cos(x) + \left(\frac{3\sin(x)+\sin(3x)}{12}\right) \sin(x)

Simplify each term:

yp2(x)=14cos(2x)12y_{p2}(x) = \frac{1}{4} - \frac{\cos(2x)}{12}

so, yp(x)=12+14cos(2x)12=34cos(2x)12y_p(x) = \frac{1}{2} + \frac{1}{4} - \frac{\cos(2x)}{12} = \frac{3}{4} - \frac{\cos(2x)}{12}

Step 8: Write the General Solution

The general solution to the differential equation is:

y(x)=yh(x)+yp(x)y(x) = y_h(x) + y_p(x)

where

yh(x)=C1cos(x)+C2sin(x)y_h(x) = C_1 \cos(x) + C_2 \sin(x)

and

yp(x)=34cos(2x)12y_p(x) = \frac{3}{4} - \frac{\cos(2x)}{12}

So,

y(x)=C1cos(x)+C2sin(x)+34cos(2x)12y(x) = \boxed{C_1 \cos(x) + C_2 \sin(x) + \frac{3}{4} - \frac{\cos(2x)}{12}}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)