image
image
image
image
image
image
image
image
image
image

Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.) (x1)yxy+y=0(x - 1) y'' - x y' + y = 0 with the initial conditions: y(0)=2,y(0)=5y(0) = -2, \, y'(0) = 5

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Use the power series method to solve the given initial-value problem. (format your final answer as an elementary function.) (x1)yxy+y=0(x - 1) y'' - x y' + y = 0 with the initial conditions: y(0)=2,y(0)=5y(0) = -2, \, y'(0) = 5

Use the power series method to solve the given initial-value problem. (format yo | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 24, 2024

Differential Equation Homework Help

This is the solution to Math 2A, section 13Z, Fall 2023 | WebAssign
Math002ACh6Sec02 (Homework) Question - 5
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Homework Help


Step-by-step solution:

We are tasked with solving the given second-order differential equation using the power series method and satisfying the initial conditions.

Step 1: Assume a Power Series Solution

We assume the solution is of the form:

y(x)=n=1anxny(x) = \displaystyle\sum_{n=1}^{\infty} a_n x^n

Then, we have the following expressions for the derivatives of y(x)y(x):

  1. First derivative:

y(x)=n=1nanxn1y'(x) = \displaystyle\sum_{n=1}^{\infty} n a_n x^{n-1}

  1. Second derivative:

y(x)=n=1n(n1)anxn2y''(x) = \displaystyle\sum_{n=1}^{\infty} n(n-1) a_n x^{n-2}

Step 2: Substitute into the Differential Equation

Now, substitute the power series expressions for y(x)y(x), y(x)y'(x), and y(x)y''(x) into the differential equation:

(x1)y(x)xy(x)+y(x)=0(x - 1) y''(x) - x y'(x) + y(x) = 0

Substitute y(x)y''(x), y(x)y'(x), and y(x)y(x) into the equation:

(x1)n=1n(n1)anxn2xn=1nanxn1+n=0anxn=0(x - 1) \displaystyle\sum_{n=1}^{\infty} n(n-1) a_n x^{n-2} - x \sum_{n=1}^{\infty} n a_n x^{n-1} + \sum_{n=0}^{\infty} a_n x^n = 0

We expand each term:

  1. First term: (x1)y(x)(x - 1) y''(x)

(x1)n=1n(n1)anxn2=n=2n(n1)anxn1n=2n(n1)anxn2(x - 1) \displaystyle\sum_{n=1}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-1} - \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2}

  1. Second term: xy(x)-x y'(x)

xn=1nanxn1=n=1nanxn- x \displaystyle\sum_{n=1}^{\infty} n a_n x^{n-1} = - \sum_{n=1}^{\infty} n a_n x^n

  1. Third term: y(x)y(x)

n=1anxn\displaystyle\sum_{n=1}^{\infty} a_n x^n

Now combine the three terms:

n=1n(n1)anxn1n=2n(n1)anxn2n=1nanxn+n=0anxn=0\displaystyle\sum_{n=1}^{\infty} n(n-1) a_n x^{n-1} - \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} - \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0

Substitute (n = (n+1)) in the first term and (n = (n + 2)) in the second term.

Rewriting the above expression again:

n=1(n+1)(n)an+1xnn=0(n+2)(n+1)an+2xnn=1nanxn+n=0anxn=0\displaystyle\sum_{n=1}^{\infty} (n+1)(n) a_{n+1} x^{n} - \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^{n} - \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} a_n x^n = 0

Now we have to make all summation terms starting from (n = 1)

n=1(n+1)(n)an+1xn2a2n=1(n+2)(n+1)an+2xnn=1nanxn+a0+n=1anxn=0\displaystyle\sum_{n=1}^{\infty} (n+1)(n) a_{n+1} x^{n} - 2a_2 - \sum_{n=1}^{\infty} (n+2)(n+1) a_{n+2} x^{n} - \sum_{n=1}^{\infty} n a_n x^n + a_0 + \sum_{n=1}^{\infty} a_n x^n = 0

Rearranging the above expression:

(a02a2)+n=1(n+1)(n)an+1xnn=1(n+2)(n+1)an+2xnn=1nanxn+n=1anxn=0(a_0 - 2a_2) + \displaystyle\sum_{n=1}^{\infty} (n+1)(n) a_{n+1} x^{n} - \sum_{n=1}^{\infty} (n+2)(n+1) a_{n+2} x^{n} - \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=1}^{\infty} a_n x^n = 0

After solving further:

(a02a2)+n=1((n2+n)an+1(n2+3n+2)an+2+(1n)an)xn=0(a_0 - 2a_2) + \displaystyle\sum_{n=1}^{\infty} \bigg((n^2+n)a_{n+1} - (n^2+3n+2)a_{n+2} + (1-n)a_n\bigg)x^n = 0

Comparing coefficients of constants terms:

a02a2=0a2=a02a_0 - 2a_2 = 0 \Rarr a_2 = \frac{a_0}{2}

Comparing coefficients of xnx^n term:

an+2=(n2+n)an+1(n1)ann2+3n+2a_{n+2} = \dfrac{(n^2+n)a_{n+1}-(n-1)a_n}{n^2+3n+2}, where n1n \ge 1

For n=1a3=a23=a06=a01.2.3n=1 \Rarr a_3 = \dfrac{a_2}{3} = \dfrac{a_0}{6} = \dfrac{a_0}{1.2.3}

For n=2a4=6a3a212=a024=a01.2.3.4n=2 \Rarr a_4 = \dfrac{6a_3-a_2}{12} = \dfrac{a_0}{24} = \dfrac{a_0}{1.2.3.4}

For n=3a5=12a42a320=a0120=a01.2.3.4.5n=3 \Rarr a_5 = \dfrac{12a_4-2a_3}{20} = \dfrac{a_0}{120} = \dfrac{a_0}{1.2.3.4.5}

WE know that

y(x)=n=1anxn=a0+a1x+a2x2+a3x3+a4x4+a5x5+....y(x) = \displaystyle\sum_{n=1}^{\infty} a_n x^n = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + .... \infty

Replacing the values of coefficients in terms of a0a_0

y(x)=n=1anxn=a0(1+x21.2+x31.2.3+x41.2.3.4+x51.2.3.4.5+....)+a1xy(x) = \displaystyle\sum_{n=1}^{\infty} a_n x^n = a_0 \bigg(1 + \frac{x^2}{1.2} + \frac{x^3}{1.2.3} + \frac{x^4}{1.2.3.4} + \frac{x^5}{1.2.3.4.5} + ....\infty \bigg) + a_1x

y(x)=n=1anxn=a0(1+x22!+x33!+x44!+x55!+....)+a1xy(x) = \displaystyle\sum_{n=1}^{\infty} a_n x^n = a_0 \bigg(1 + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + ....\infty \bigg) + a_1x

We know that ex=1+x+x22!+x33!+....e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ....

y(x)=a0(exx)+a1xy(x) = a_0(e^x - x) + a_1x

Step 3: Apply the Initial Conditions

Using the given initial conditions y(0)=2y(0) = -2 and y(0)=5y'(0) = 5, we know the following:

  • From y(0)=2y(0) = -2: this implies that a0=2a_0 = -2.

y(x)=a0(ex1)+a1y'(x) = a_0(e^x - 1) + a_1

  • From y(0)=5y'(0) = 5: this implies that a1=5a_1 = 5.

Step 5: Summing the Power Series

y(x)=2(exx)+5xy(x) = -2(e^x - x) + 5x

After simplifying

y(x)=7x2exy(x) = 7x -2e^x

Final Answer:

The final solution, formatted as an elementary function, is:

y(x)=7x2exy(x) = \boxed{7x -2e^x}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)