image
image
image
image
image
image
image
image
image
image

Find the orthogonal projection of y\mathbf{y} onto Span(u1,u2)\text{Span}(u_1, u_2).

y=[136],u1=[512],u2=[112]\mathbf{y} = \begin{bmatrix} -1 \\ 3 \\ -6 \end{bmatrix}, \quad u_1 = \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find the orthogonal projection of y\mathbf{y} onto span(u1,u2)\text{span}(u_1, u_2).

y=[136],u1=[512],u2=[112]\mathbf{y} = \begin{bmatrix} -1 \\ 3 \\ -6 \end{bmatrix}, \quad u_1 = \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}

![Find the orthogonal projection of y\mathbf{y} onto span(u1,u2)\text{span}(u_1, u_2).

| Doubtlet.com](https://doubt.doubtlet.com/images/20241022-084251-23.png)

Solution:

Neetesh Kumar

Neetesh Kumar | October 21, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Final Exam Question Number 23
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

The orthogonal projection of a vector y\mathbf{y} onto the subspace spanned by u1u_1 and u2u_2 is given by the formula:

ProjW(y)=c1u1+c2u2\text{Proj}_{W}(\mathbf{y}) = c_1 u_1 + c_2 u_2

Where c1c_1 and c2c_2 are the scalar projection coefficients. To find c1c_1 and c2c_2, we solve the system of equations:

Ac=yA \mathbf{c} = \mathbf{y}

Where A=[u1u2]A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} and c=[c1c2]\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.

Step 1: Form the matrix AA

The matrix AA is formed using u1u_1 and u2u_2:

A=[511122]A = \begin{bmatrix} -5 & 1 \\ -1 & -1 \\ 2 & 2 \end{bmatrix}

Step 2: Compute ATAA^T A

We now compute the Gram matrix ATAA^T A:

ATA=[512112][511122]=[3010106]A^T A = \begin{bmatrix} -5 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} -5 & 1 \\ -1 & -1 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 30 & -10 \\ -10 & 6 \end{bmatrix}

Step 3: Compute ATyA^T \mathbf{y}

Next, we compute ATyA^T \mathbf{y}:

ATy=[512112][136]=[53121312]=[1016]A^T \mathbf{y} = \begin{bmatrix} -5 & -1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ -6 \end{bmatrix} = \begin{bmatrix} 5 - 3 - 12 \\ -1 - 3 - 12 \end{bmatrix} = \begin{bmatrix} -10 \\ -16 \end{bmatrix}

Step 4: Solve for c\mathbf{c}

We now solve the system:

[3010106][c1c2]=[1016]\begin{bmatrix} 30 & -10 \\ -10 & 6 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -10 \\ -16 \end{bmatrix}

Using standard methods to solve this system (e.g., Gaussian elimination or matrix inversion), we find:

c1=43,c2=2c_1 = \frac{4}{3}, \quad c_2 = -2

Step 5: Compute the projection

Now that we have c1c_1 and c2c_2, we compute the projection of y\mathbf{y} onto the subspace spanned by u1u_1 and u2u_2:

ProjW(y)=43u12u2\text{Proj}_{W}(\mathbf{y}) = \frac{4}{3} u_1 - 2 u_2

Substituting the values of u1u_1 and u2u_2:

ProjW(y)=43[512]2[112]=[2034383][224]\text{Proj}_{W}(\mathbf{y}) = \frac{4}{3} \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{20}{3} \\ -\frac{4}{3} \\ \frac{8}{3} \end{bmatrix} - \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}

Simplifying the result:

ProjW(y)=[2632343]\text{Proj}_{W}(\mathbf{y}) = \begin{bmatrix} -\frac{26}{3} \\ \frac{2}{3} \\ -\frac{4}{3} \end{bmatrix}

Final Answer:

The correct answer is (b):

[136]\begin{bmatrix} -1 \\ 3 \\ -6 \end{bmatrix}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)