image
image
image
image
image
image
image
image
image
image

Let A=[122112]A = \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} and b=[544]b = \begin{bmatrix} 5 \\ -4 \\ 4 \end{bmatrix}.

The orthogonal projection of bb onto Col(A)\text{Col}(A) and the least-squares solution of Ax=bA\mathbf{x} = \mathbf{b} are:

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Let a=[122112]a = \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} and b=[544]b = \begin{bmatrix} 5 \\ -4 \\ 4 \end{bmatrix}.

the orthogonal projection of bb onto col(a)\text{col}(a) and the least-squares solution of ax=ba\mathbf{x} = \mathbf{b} are:

Let a = \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} and $b = \begin | Doubtlet.com

Let a = \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} and $b = \begin | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 21, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Final Exam Question Number 26
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

Step 1: Compute the orthogonal projection of b\mathbf{b} onto Col(A)\text{Col}(A)

Matrix Multiplication Calculator

To compute the orthogonal projection of b\mathbf{b} onto the column space of AA, we use the formula:

ProjCol(A)(b)=A(ATA)1ATb\text{Proj}_{\text{Col}(A)}(\mathbf{b}) = A(A^T A)^{-1} A^T \mathbf{b}

First, compute ATAA^T A:

ATA=[121212][122112]=[6229]A^T A = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}

Next, compute ATbA^T \mathbf{b}:

ATb=[121212][544]=[5+(8)+410+(4)+8]=[914]A^T \mathbf{b} = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 4 \end{bmatrix} = \begin{bmatrix} -5 + (-8) + 4 \\ 10 + (-4) + 8 \end{bmatrix} = \begin{bmatrix} -9 \\ 14 \end{bmatrix}

Now, compute (ATA)1(A^T A)^{-1}:

(ATA)1=[6229]1=[950125125325](A^T A)^{-1} = \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{9}{50} & \frac{-1}{25} \\ \frac{-1}{25} & \frac{3}{25} \end{bmatrix}

Now, compute the projection:

ProjCol(A)(b)=A[950125125325][914]=A[109505125]=A[2.182.04]\text{Proj}_{\text{Col}(A)}(\mathbf{b}) = A \begin{bmatrix} \frac{9}{50} & \frac{-1}{25} \\ \frac{-1}{25} & \frac{3}{25} \end{bmatrix} \begin{bmatrix} -9 \\ 14 \end{bmatrix} = A \begin{bmatrix} -\frac{109}{50} \\ \frac{51}{25} \end{bmatrix} = A \begin{bmatrix} -2.18 \\ 2.04 \end{bmatrix}

Multiplying AA with this result:

ProjCol(A)(b)=[122112][109505125]=ProjCol(A)(b)=[3135058251910]\text{Proj}_{\text{Col}(A)}(\mathbf{b}) = \begin{bmatrix} -1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -\frac{109}{50} \\ \frac{51}{25} \end{bmatrix} = \text{Proj}_{\text{Col}(A)}(\mathbf{b}) = \begin{bmatrix} \frac{313}{50} \\ -\frac{58}{25} \\ \frac{19}{10} \end{bmatrix}

Step 2: Solve the least-squares solution Ax=bA\mathbf{x} = \mathbf{b}

The least-squares solution can be found by solving:

x=(ATA)1ATb\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}

We already computed ATA=[6229]A^T A = \begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}, (ATA)1=[950125125325](A^T A)^{-1} = \begin{bmatrix} \frac{9}{50} & \frac{-1}{25} \\ \frac{-1}{25} & \frac{3}{25} \end{bmatrix}, and ATb=[914]A^T \mathbf{b} = \begin{bmatrix} -9 \\ 14 \end{bmatrix}.

Now compute:

x=[950125125325][914]=[109505125]=[2.182.04]\mathbf{x} = \begin{bmatrix} \frac{9}{50} & \frac{-1}{25} \\ \frac{-1}{25} & \frac{3}{25} \end{bmatrix} \begin{bmatrix} -9 \\ 14 \end{bmatrix} = \begin{bmatrix} \frac{-109}{50} \\ \frac{51}{25} \end{bmatrix} = \begin{bmatrix} -2.18 \\ 2.04 \end{bmatrix}

Final Answer:

The correct answer is Option - B

  • The orthogonal projection of b\mathbf{b} onto Col(A)\text{Col}(A) is [3135058251910]\begin{bmatrix} \frac{313}{50} \\ -\frac{58}{25} \\ \frac{19}{10} \end{bmatrix}
  • The least-squares solution is x=[109505125]\mathbf{x} = \begin{bmatrix} \frac{-109}{50} \\ \frac{51}{25} \end{bmatrix}


Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)