image
image
image
image
image
image
image
image
image
image

Find a basis for the eigenspace corresponding to the eigenvalue λ=3\lambda = 3 for the matrix:

A=[432294131]A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 9 & 4 \\ -1 & -3 & 1 \end{bmatrix}

A basis for the eigenspace corresponding to λ=3\lambda = 3 is

Shape 2
Shape 3
Shape 4
Shape 5
Shape 7
Shape 8
Shape 9
Shape 10

Question :

Find a basis for the eigenspace corresponding to the eigenvalue λ=3\lambda = 3 for the matrix:

a=[432294131]a = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 9 & 4 \\ -1 & -3 & 1 \end{bmatrix}

a basis for the eigenspace corresponding to λ=3\lambda = 3 is

Find a basis for the eigenspace corresponding to the eigenvalue $$ \lambda = 3 $ | Doubtlet.com

Solution:

Neetesh Kumar

Neetesh Kumar | October 16, 2024

Linear Algebra Homework Help

This is the solution to Math2B Course: Linear Algebra
Assignment: Ch5 Section 1 Question Number 6
Contact me if you need help with Homework, Assignments, Tutoring Sessions, or Exams for STEM subjects.
You can see our Testimonials or Vouches from here of the previous works I have done.

Get Linear Algebra Homework Help


Step-by-step solution:

Eigenvalue and Eigenvector calculator

To find the eigenspace for λ=3\lambda = 3, we need to solve the equation:

(A3I)v=0(A - 3I)v = 0

where II is the identity matrix.

Step 1: Compute A3IA - 3I

We subtract 3I3I from matrix AA:

A3I=[432294131]3[100010001]=[132264132]A - 3I = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 9 & 4 \\ -1 & -3 & 1 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ -1 & -3 & -2 \end{bmatrix}

Step 2: Solve the system of equations

We now solve the equation:

[132264132][x1x2x3]=[000]\begin{bmatrix} 1 & 3 & 2 \\ 2 & 6 & 4 \\ -1 & -3 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

Row reducing the augmented matrix:

[132026401320]\begin{bmatrix} 1 & 3 & 2 & 0 \\ 2 & 6 & 4 & 0 \\ -1 & -3 & -2 & 0 \end{bmatrix}

After performing Gaussian elimination , we get the following reduced matrix:

[132000000000]\begin{bmatrix} 1 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}

This gives us the following system of equations:

x1+3x2+2x3=0x_1 + 3x_2 + 2x_3 = 0

From this equation, we can express x1x_1 in terms of x2x_2 and x3x_3:

x1=3x22x3x_1 = -3x_2 - 2x_3

Thus, the general solution for the eigenvector is:

v=[x1x2x3]=[3x22x3x2x3]v = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3x_2 - 2x_3 \\ x_2 \\ x_3 \end{bmatrix}

We can break this into two independent vectors by setting x2=1,x3=0x_2 = 1, x_3 = 0 for one vector and x2=0,x3=1x_2 = 0, x_3 = 1 for the other:

v1=[310],v2=[201]v_1 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}

Final Answer:

A basis for the eigenspace corresponding to λ=3\lambda = 3 is:

[310],[201]\boxed{\begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}}



Please comment below if you find any error in this solution.
If this solution helps, then please share this with your friends.
Please subscribe to my Youtube channel for video solutions to similar questions.
Keep Smiling :-)

Leave a comment

Comments(0)